
Lab 1

GMRES

Lab Objective: In this lab we will learn how to use the GMRES algorithm.

The GMRES (”Generalized Minimal Residuals”) algorithm is an efficient way to

solve large linear systems. It is an iterative method that uses Krylov subspaces to

reduce a high-dimensional problem to a sequence of smaller dimensional problems.

The GMRES Algorithm

Let A be an invertible m×m matrix and let b be an m-vector. Let Kn(A,b) be the

order-n Krylov subspace generated by A and b. The idea of the GMRES algorithm

is that instead of solving Ax = b directly, we use least squares to find xn ∈ Kn that

minimizes the residual rn = ‖b−Axn‖2. The algorithm returns when this residual

is sufficiently small. In good circumstances, this will happen when n is still much

less than m.

The GMRES algorithm is implemented with the Arnoldi iteration for numerical

stability. The Arnoldi iteration produces Hn, an (n + 1) × n upper Hessenberg

matrix, and Qn, the matrix containing the basis vectors of Kn(A,b), such that

AQn = Qn+1Hn. We are looking for xn = Qnyn + x0 for some yn ∈ Rn which

minimizes the norm of b − Axn. Since the columns of Q are orthonormal, we can

compute the residual equivalently as

‖b−Axn‖2 = ‖Qn+1(βe1 −Hnyn)‖2 = ‖Hnyn − βe1‖2. (1.1)

Here e1 is the vector (1, 0, . . . , 0) of length n + 1. β is the Euclidean norm of

b − Ax0, where x0 is an initial arbitrary guess of the solution. (Ordinarily this

guess is zero, and then the Ax0 could be left out; however, a modified version of the

algorithm will be discussed at the end of the lab, in which other nonzero guesses

will be made.) Thus to minimize the left side of 1.1, we can minimize the right, and

xn can be computed as Qnyn + x0.

This algorithm is outlined in Algorithm 1.1. For a complete derivation see

[TODO: ref textbook].

1

2 Lab 1. GMRES

Algorithm 1.1 The GMRES algorithm. This algorithm operates on a vector b

and matrix A. It iterates k times or until the residual is less than tol, returning an

approximate solution to Ax = b and the error in this approximation.

1: procedure GMRES(A,b,x0, k, tol)

2: Q← empty(size(b), k + 1) . Initialize

3: H ← zeros(k + 1, k)

4: r0 ← b−Ax0

5: Q[:, 0] = r0/ ‖r0‖2
6: for n = 1 . . . k do

7: Set entries of Q and H as in Arnoldi iteration.

8: Compute the residual res and the least squares solution yn for the part

of H so far created (equation 1.1).

9: if res < tol then

10: return Q[:, : n+ 1]y + x0, res

11: return Q[:, : n+ 1]y + x0, res

Problem 1. Use Algorithm 1.1 to complete the following Python function

implementing the GMRES algorithm.

def gmres(A, b, x0, k=100, tol=1e-8):

'''Calculate approximate solution of Ax=b using GMRES algorithm.

INPUTS:

A - Callable function that calculates Ax for any input vector x.

b - A NumPy array of length m.

x0 - An arbitrary initial guess.

k - Maximum number of iterations of the GMRES algorithm. Defaults ←↩
to 100.

tol - Stop iterating if the residual is less than 'tol'. Defaults to ←↩
1e-8.

RETURN:

Return (y, res) where 'y' is an approximate solution to Ax=b and 'res'
is the residual.

Examples:

>>> a = np.array([[1,0,0],[0,2,0],[0,0,3]])

>>> A = lambda x: a.dot(x)

>>> b = np.array([1, 4, 6])

>>> x0 = np.zeros(b.size)

>>> gmres(A, b, x0)

(array([1., 2., 2.]), 1.09808907533e-16)

'''

You may assume that the input b is a real array and the function A() always

outputs real arrays.

Hint: Use numpy.linalg.lstsq() to solve the least squares problem. Be sure

to read the documentation so you know what the function returns to you.

3

Convergence of GMRES

At the n-th iteration, GMRES computes the best approximate solution x ∈ Kn to

Ax = b. If A is full rank, then Km = Fm, so the mth iteration will always return

an exact answer. However, we say the algorithm converges after n steps if the nth

residual is sufficiently small.

The rate of convergence of GMRES depends on the eigenvalues of A.

Problem 2. Implement the following Python function by modifying your

solution to Problem 1.

def plot_gmres(A, b, x0, tol=1e-8):

'''Use the GMRES algorithm to approximate the solution to Ax=b. Plot ←↩
the eigenvalues of A and the convergence of the algorithm.

INPUTS:

A - A 2-D NumPy array of shape mxm.

b - A 1-D NumPy array of length m.

x0 - An arbitrary initial guess.

tol - Stop iterating and create the desired plots when the residual is

less than 'tol'. Defaults to 1e-8.

OUTPUT:

Follow the GMRES algorithm until the residual is less than tol, for a

maximum of m iterations. Then create the two following plots (subplots

of a single figure):

1. Plot the eigenvalues of A in the complex plane.

2. Plot the convergence of the GMRES algorithm by plotting the

iteration number on the x-axis and the residual on the y-axis.

Use a log scale on the y-axis.

'''

Use this function to investigate the convergence of GMRES as follows.

Define an m×m matrix

An = nI + P,

where I is the m×m identity matrix and P is a m×m matrix of numbers from

a random normal distribution with mean 0 and standard deviation 1/(2
√
m).

Write a function that calls plot_gmres on An for n = −4,−2, 0, 2, 4. Use

m = 200, let b be an array of ones, and let x0 be the zero vector or anything

else that suits you. How does the convergence of the GMRES algorithm

relate to the eigenvalues?

Hints:

1. Create a plot with a log scale on the y-axis with plt.yscale('log').

2. Create a matrix with entries from a random normal distribution with

np.random.normal(). Read the documentation for more information.

4 Lab 1. GMRES

3. Note that the parameter A required here is not a callable function but

a matrix; this is to allow the finding of the eigenvalues.

4. Output for n = 2, m = 200 is in Figure 1.1 below.

Ideas for this problem were taken from Example 35.1 on p. 271 of [Trefethen1997

].

0 2 4 6 8 10 12 14
10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

1.4 1.6 1.8 2.0 2.2 2.4 2.6
0.6

0.4

0.2

0.0

0.2

0.4

0.6

Figure 1.1: The left plot is the eigenvalues of the matrix A2, which is defined in

Problem 2. The right plot is the convergence of the GMRES algorithm on A2 with

starting vector b = (1, 1, . . . , 1). This figure is one possible output of the function

plot_gmres().

Improving GMRES

There are many ways to make the GMRES algorithm more robust and efficient.

Breakdowns in GMRES

One of the selling points of GMRES is that it can’t break down unless it reaches

an exact solution. In other words, the only way GMRES could break down is if

a vector found by the Arnoldi iteration is 0. That is, suppose, we have already

computed

Kn(A,b) = span{b, Ab, . . . , An−1b} = span{q1, . . . ,qn}.

We next compute Anb and orthogonalize it against Kn(A,b), yielding qn+1. But

if Anb ∈ Kn(A,b) then qn+1 will be 0, and our algorithm will break when we try

to normalize qn+1.

5

In this situation, the least squares solution to (1.1) is an exact solution to Ax =

b. In other words, b is in the span{q1, . . . ,qn}. Fortunately, precautions against

this have been taken in our implementation of the Arnoldi algorithm.

GMRES with Restarts

The first few iterations of GMRES have low spatial and temporal complexity. How-

ever, as k increases, the kth iteration of GMRES becomes more expensive in both

time and memory. In fact, computing the kth iteration of GMRES for very large k

can be prohibitively complex.

This issue is addressed by using GMRES(k), or GMRES with restarts. When k

becomes large, this algorithm restarts GMRES but with an improved initial guess.

GMRES with restarts is outlined in Algorithm 1.2.

Algorithm 1.2 The GMRES(k) algorithm. This algorithm performs GMRES on

a vector b and matrix A. It iterates k times before restarting. It terminates after

restarts restarts or when the residual is less than tol, returning an approximate

solution to Ax = b and the error in this approximation.

1: procedure GMRES(k)(A,b,x0, k, tol, restarts)

2: n← 0 . Initialize

3: while n ≤ restarts do

4: Perform the GMRES algorithm, obtaining a least squares solution y.

5: If the desired tolerance was reached, return. Otherwise, continue.

6: x0 ← y

7: n← n+ 1

8: return y, res . Return the approximate solution and the residual

The algorithm GMRES(k) will always have manageable spatial and temporal

complexity, but it is less reliable than GMRES. If the true solution x to Ax = b

is nearly orthogonal to the Krylov subspaces Kn(A,b) for n ≤ k, then GMRES(k)

could converge very slowly or not at all.

Problem 3. Implement Algorithm 1.2 with the following function.

def gmres_k(A, b, x0, k=5, tol=1E-8, restarts=50):

'''Use the GMRES(k) algorithm to approximate the solution to Ax=b.

INPUTS:

A - A callable function that calculates Ax for any vector x.

b - A NumPy array.

x0 - An arbitrary initial guess.

k - Maximum number of iterations of the GMRES algorithm before

restarting. Defaults to 5.

tol - Stop iterating if the residual is less than 'tol'. Defaults

to 1E-8.

restarts - Maximum number of restarts. Defaults to 50.

RETURN:

Return (y, res) where 'y' is an approximate solution to Ax=b and 'res'

6 Lab 1. GMRES

is the residual.

'''

Compare the speed of gmres() from Problem 1 and gmres_k() on the ma-

trices in Problem 2.

GMRES in SciPy

The GMRES algorithm is implemented in SciPy as the function scipy.sparse.linalg

.gmres(). Here we use this function to solve Ax = b where A is a random 300× 300

matrix and b is a random vector.

>>> import numpy as np

>>> from scipy import sparse as spar

>>> from scipy import linalg as la

>>>

>>> A = np.random.rand(300, 300)

>>> b = np.random(300)

>>> x, info = spar.linalg.gmres(A, b)

>>> info

3000

The function outputs two objects: the approximate solution x and a constant

info telling if the function converged. If info=0 then convergence occured; if info is

positive then it equals the number of iterations performed. In this case, the function

performed 3000 iterations of GMRES before returning the approximate solution x.

We can check how close the solution is.

>>> la.norm(A.dot(x)-b)

4.744196381683801

We can get a better approximation using GMRES with restarts.

>>> # Restart after 1000 iterations

>>> x, info = spar.linalg.gmres(A, b, restart=1000)

>>> info

0

>>> la.norm(A.dot(x)-b)

1.0280404494143551e-12

This time, the returned approximation x is about as close to a true solution as we

could hope for.

	GMRES

