
Lab 1

Krylov Subspaces

Lab Objective: Discuss simple Krylov Subspace Methods for finding eigenvalues

and show some interesting applications.

One of the biggest difficulties in computational linear algebra is the amount of

memory needed to store a large matrix and the amount of time needed to read its

entries. Methods using Krylov subspaces avoid this difficulty by studying how a

matrix acts on vectors, making it unnecessary in many cases to create the matrix

itself.

More specifically, we can construct a Krylov subspace just by knowing how

a linear transformation acts on vectors, and with these subspaces we can closely

approximate eigenvalues of the transformation and solutions to associated linear

systems.

The Arnoldi iteration is an algorithm for finding an orthonormal basis of a

Krylov subspace. Its outputs can also be used to approximate the eigenvalues of

the original matrix.

The Arnoldi Iteration

The order-N Krylov subspace of A generated by x is

Kn(A,x) = span{x, Ax, A2x, . . . , An−1x}.

If the vectors {x, Ax, A2x, . . . , An−1x} are linearly independent, then they form a

basis for Kn(A,x). However, this basis is usually far from orthogonal, and hence

computations using this basis will likely be ill-conditioned.

One way to find an orthonormal basis for Kn(A,x) would be to use the modi-

fied Gram-Schmidt algorithm from Lab TODO on the set {x, Ax, A2x, . . . , An−1x}.
More efficiently, the Arnold iteration integrates the creation of {x, Ax, A2x, . . . , An−1x}
with the modified Gram-Schmidt algorithm, returning an orthonormal basis for

Kn(A,x). This algorithm is described in Algorithm 1.1.

In Algorithm 1.1, k is the number of times we multiply by A. This will result

in an order-k + 1 Krylov subspace.

1

2 Lab 1. Finding Eigenvalues Using Iterative Methods

Algorithm 1.1 The Arnoldi Iteration. This algorithm operates on a vector b of

length n and an n × n matrix A. It iterates k times or until the norm of the next

vector in the iteration is less than tol.
1: procedure arnoldi(b, A, k, tol = 1E − 8)

2: Q← empty (b.size, k + 1) . Some initialization steps

3: H ← zeros (k + 1, k)

4: Q[:,0] = b

5: Q[:,0]/ = ‖Q[:,0]‖2
6: for j = 0, j < k do . Perform the actual iteration.

7: Q[:,j+1] = AQ[:,j]

8: for i = 0, i < j + 1 do . Modified Gram-Schmidt.

9: H[i,j] = 〈Q[:,i], Q[:,j+1]〉
10: Q[:,j+1]− = H[i,j]Q[:,i]

11: H[j+1,j] = ‖Q[:,j+1]‖2 . Set subdiagonal element of H.

12: if |H[j+1,j]| < tol then . Stop if ‖Q[:,j+1]‖2 is too small.

13: return H[:j+1,:j+1], Q[:,:j+1]

14: Q[:,j+1]/ = H[j+1,j] . Normalize qj+1.

15: return H[:−1,:], Q . Return Hk.

Something perhaps unexpected happens in the Arnoldi iteration if the starting

vector x is an eigenvector of A. If the corresponding eigenvalue is λ, then by

definition Kk(A,x) = span{x, λx, λ2x, . . . , λkx}, which is equal to the span of x.

Let us trace through Algorithm ?? in this case. We will use qi to denote the ith

column of Q.

In line 5 we normalize x, setting q0 = x/‖x‖. In line 7 we set q1 = Aq0 = λq0.

Then in line 9

H0,0 = 〈q0, q1〉 = 〈q0, λq0〉 = λ〈q0, q0〉 = λ,

so in line 10 we subtract λq0 from q1, ending with q1 = 0.

The vector q1 is supposed to be the next vector in the orthonormal basis for

Kk(A,x), but since it is 0, it is not linearly independent of q0. In fact, q0 already

spans Kk(A,x). Hence, when in line 12 we find that the norm of q1 is zero (or close

to it, allowing for numerical error), we terminate the algorithm early, returning the

1× 1 matrix H = H0,0 = λ and the n× 1 matrix Q = q0.

A similar phenomenon may occur if the starting vector x is contained in a proper

invariant subspace of A.

Problem 1. Using Algorithm 1.1, complete the following Python function

that performs the Arnoldi iteration. Write this function so that it can run

on complex arrays.

def arnoldi(b, Amul, k, tol=1E-8):

'''Perform `k' steps of the Arnoldi iteration on the linear operator

defined by `Amul', staring with the vector 'b'.

INPUTS:

3

b - A NumPy array. The starting vector for the Arnoldi iteration.

Amul - A function handle. Should describe a linear operator.

k - Number of times to perform the Arnoldi iteration.

tol - Stop iterating if the next vector in the Arnoldi iteration has

norm less than `tol'. Defaults to 1E-8.

RETURN:

Return the matrices H_n and Q_n defined by the Arnoldi iteration. The

number n will equal k, unless the algorithm terminated early, in which

case n will be less than k.

Examples:

>>> A = np.array([[1,0,0],[0,2,0],[0,0,3]])

>>> Amul = lambda x: A.dot(x)

>>> H, Q = arnoldi(np.array([1,1,1]), Amul, 3)

>>> np.allclose(H, np.conjugate(Q.T).dot(A).dot(Q))

True

>>> H, Q = arnoldi(np.array([1,0,0]), Amul, 3)

>>> H

array([[1.+0.j]])

>>> np.conjugate(Q.T).dot(A).dot(Q)

array([[1.+0.j]])

'''

Hints:

1. Since H and Q will eventually hold complex numbers, initialize them as

complex arrays (e.g., A = np.empty((3,3), dtype=complex128)).

2. Remember to use complex inner products.

3. TODO: does it matter if you return H or a copy of H?

Finding Eigenvalues Using Arnoldi iteration

Let A be an n× n matrix. The matrices Hk and Qk created by k iterations of the

Arnoldi algorithm satisfy

Hk = Q∗kAQk.

Since Hk is a k × k matrix, if k < n then Hk is a low-rank approximation to

A. We may use its eigenvalues as approximations to the eigenvalues of A. The

eigenvalues of Hk are called Ritz values, and in fact they converge quickly to the

largest eigenvalues of A.

Problem 2. Finish the following function that computes the Ritz values of

a matrix.

def ritz(Amul, dim, k, iters):

''' Find the `k' Ritz values with largest real part of the linear ←↩
operator defined by `Amul'.

4 Lab 1. Finding Eigenvalues Using Iterative Methods

INPUTS:

Amul - A function handle. Should describe a linear operator on

R^(dim).

dim - The dimension of the space on which `Amul' acts.

numvals - The number of Ritz values to return.

iters - The number of times to perform the Arnoldi iteration. Must

be between `numvals' and `dim'.

RETURN:

Return the `k' Ritz values with largest real part of the operator ←↩
defined by `Amul.'

'''

One application of the Arnoldi iteration is to find the eigenvalues of linear op-

erators that are too large to store in memory. For example, if an operator acts on

C220 , then its matrix representation contains 240 complex values. Storing such a

matrix would require 64 terabytes of memory!

An example of such an operator is the Fast Fourier Transform, claimed by

SIAM to be one of the top algorithms of the century [TODO: cite!]. The Fast

Fourier Transform is used in many applications, including oil hunting and mp3

compression.

Problem 3. The eigenvalues of the Fast Fourier Transform are known to

be {−1, 1,−i, i}. Use your function ritz() from Problem 2 to approximate

the eigenvalues of the Fast Fourier Transform. Set k to be 10 and set dim to

be 220. For the argument Amul, use the fft function from scipy.fftpack.

The Arnoldi iteration for finding eigenvalues is implemented in a Fortran library

called ARPACK. SciPy interfaces with the Arnoldi iteration in this library via the

function scipy.sparse.linalg.eigs(). This function has many more options than the

implementation we wrote in Problem 2. In this example, the keyword argument k=5

specifies that we want five Ritz values. Note that even though this function comes

from the sparse library in SciPy, we can still call it on regular NumPy arrays.

>>> B = np.random.rand(10000).reshape(100, 100)

>>> sp.sparse.linalg.eigs(B, k=5, return_eigenvectors=False)

array([-1.15577072-2.59438308j, -2.63675878-1.09571889j,

-2.63675878+1.09571889j, -3.00915592+0.j , 50.14472893+0.j])

Convergence

The Arnoldi method for finding eigenvalues quickly converges to eigenvalues whose

magnitude is distinctly larger than the rest.

5

Problem 4. Finish the following function to visualize the convergence of

the Ritz values.

def plot_ritz(Amul, dim, numvals, iters):

''' Plot the Ritz values of the linear operator defined by `Amul'.

INPUTS:

Amul - A function handle. Should describe a linear operator on

R^(dim).

dim - The dimension of the space on which `Amul' acts.

numvals - The number of Ritz values to plot.

iters - The number of times to perform the Arnoldi iteration. Must

be between `numvals' and `dim'.

Creates a plot with the number of Arnoldi iterations k on the x-axis, ←↩
and the Ritz values of the Hessenberg approximation H_k on the y-←↩
axis.

'''

Hints:

1. Before saving the Ritz values of Hk, use np.sort() to ensure that they

are in a canonical order.

2. It is not efficient to call your function from Problem 2 for increasing

values of iters. If your code takes too long to run, consider integrating

your solutions to Problems 1 and 2 with the body of this function.

Run your function on these examples. See the plots below. TODO: output

real and complex plots separately

Lanczos Iteration(Optional)

Depending on the symmetry of the problem we may be able to make the Arnoldi

iteration more efficient. Consider the case that A is symmetric. This means that the

matrx H is both Upper Hessenberg and symmetric, so it is tridiagonal. Since H is

tridiagonal, we should have that each Aqn is orthogonal to q0, . . . , qn−2. This means

that storage of all the columns of Qk is no longer necessary. We can run the entire

algorithm while storing only the previous two columns of Q that we have computed.

We can also represent H as two vectors: a vector α storing the values along the

main diagonal of H, and a vector β storing the values in the first subdiagonal (the

values in the first superdiagonal are the same). This change in the way things are

stored allows Algorithm 1.1 to be simplified to Algorithm 1.2. Algorithm 1.2 is

known as the Lanczos iteration.

Problem 5. Write a Python function that performs the Lanczos iteration.

Have it accept a starting vector b, a function Amul that computes Ax for

6 Lab 1. Finding Eigenvalues Using Iterative Methods

Figure 1.1: The convergence of the Ritz values to the largest eigenvalues of a matrix

with random eigenvalues between 0 and 1.

any vector x, a number k of iterations to perform, and an optional argument

tol that defaults to 1E-8.

In its most basic form the Lanczos iteration is not stable. In exact arithmetic

the vectors qi are exactly orthogonal, but in the presence of roundoff error this may

be absolutely false. In imprecise arithmetic, it is possible for the qi to suffer from so

much roundoff error that they may no longer even be linearly independent. There are

a variety of modifications to the Lanczos iteration that address this instability. The

library used for Lanczos iteration in Scipy uses an algorithm called the Implicitly

Restarted Lanczos Method. We will not discuss these algorithms in detail here.

Problem 6. The following code performs matrix multiplication by a tridi-

agonal symmetric matrix. It accepts vectors a and b and u. a stores the

entries in the main diagonal of the matrix. b stores the entries in the first

sub/superdiagonal. The function returns the image of u under the matrix

represented by a and b.

def tri_mul(a, b, u):

v = a * u

v[:-1] += b * u[1:]

7

Figure 1.2: The convergence of the Ritz values to the largest eigenvalues of a matrix

with random entries between 0 and 1. Matrices of this form generally have a single

isolated eigenvalue that is much larger than the rest. It can be seen here that the

Ritz values converge to this eigenvalue much more quickly.

Algorithm 1.2 The Lanczos Iteration

1: procedure lanczos(b, Amul, k, tol = 1E − 8)

2: q0 ← 0 . Some initialization

3: q1 ← b
‖b‖2

4: α← empty (k)

5: β ← empty (k)

6: β−1 = 0

7: for i = 0, i < k do . Perform the iteration.

8: z ← Amul (q1) . z is a temporary vector to store qi+1.

9: αi = 〈q1, z〉 . q1 is used to store the previous qi.

10: z− = αiq1 + βi−1q0 . q0 is used to store qi−1.

11: βi = ‖z‖2 . Initialize βi.

12: if βi < tol then . Stop if ‖qi+1‖2 is too small.

13: return α[: i+ 1], β[: i]

14: z/ = βi
15: q0, q1 = q1, z . Store new qi+1 and qi on top of q1 and q0.

16: return α, β[: −1]

8 Lab 1. Finding Eigenvalues Using Iterative Methods

v[1:] += b * u[:-1]

return v

Use the Lanczos iteration function you wrote for Problem 5 to estimate

the 5 largest eigenvalues of a symmetric tridiagonal matrix A with random

values in its nonzero diagonals (i.e. make a and b random). For demonstra-

tion purposes, let A be 1000× 1000. Perform 100 iterations. Compare the 5

eigenvalues of largest absolute value with the 5 Ritz values of largest norm.

How do they compare?

Try running your simulation a few times for different vectors a and b.

You may notice that, occasionally, the largest eigenvalue is repeated in the

Ritz values. This happens because of the lack of orthogonality between the

vectors used in the Lanczos iteration. These erroneous eigenvaleus are called

“ghost eigenvalues.” They generally converge to actual eigenvalues of the

matrix and can make the multiplicity of an eigenvalue look higher than it

really is.

Arnoldi Iteration in SciPy

SciPy interfaces with a Fortran library called ARPACK that has good implemen-

tations of the Arnoldi and Lanczos algorithms. The Arnoldi iteration is found

in scipy.sparse.linalg.eigs. The Implicitly Restarted Lanczos iteration is found

in scipy.sparse.linalg.eigsh These functions allow you to find either the largest or

smallest eigenvalues of a sparse or dense matrix. The function scipy.sparse.linalg.

svds uses the Implicitly Restarted Lanczos iteration on A∗A to find singular values.

	Finding Eigenvalues Using Iterative Methods

