
Lab 1

GMRES

Lab Objective: In this lab we will learn how to use the GMRES algorithm.

The GMRES (“Generalized Minimal Residuals”) algorithm is an effecient way

to solve large linear systems. It is an iterative method that uses Krylov subspaces to

reduce a high-dimensional problem to a sequence of smaller dimensional problems.

The GMRES Algorithm

Let A be an m×m matrix and let b be an m-vector. Let Kn(A,b) be the order-n

Krylov subspace generated by A and b. The idea of the GMRES algorithm is that

instead of solving Ax = b directly, we solve the least squares problem

minimize
x∈Kn

‖b−Ax‖2 (1.1)

for increasing values of n. At each iteration, we compute the residual, or error

between the least squares solution and a true solution of Ax = b. The algorithm

returns when this residual is sufficiently small. In good circumstances, this will

happen when n is still much less than m.

The GMRES algorithm is integrated with the Arnoldi iteration for numerical

stabiility, so that instead of solving (1.1), at the nth iteration we solve

minimize
y∈Fn

‖Hny − ‖b‖2e1‖2. (1.2)

Here, Hn is the (n + 1) × n upper Hessenberg matrix generated by the Arnoldi

iteration and e1 is the vector (1, 0, . . . , 0) of length n + 1. If y is the minimizer for

the nth iteration of (1.2), then the residual is

‖Hny − ‖b‖2e1‖2
‖b‖2

, (1.3)

and the corresponding minimizer for (1.1) is Qny, where Qn is the matrix whose

columns are q1, . . . , qn as defined by the Arnoldi iteration. This algorithm is outlined

in Algorithm 1.1. For a complete derivation see [TODO: ref textbook].

1

2 Lab 1. GMRES

Algorithm 1.1 The GMRES algorithm. This algorithm operates on a vector b of

length m and an m ×m matrix A. It iterates k times or until the residual is less

than tol.
1: procedure GMRES(A, b, k = 100, tol = 1E − 8)

2: Q← empty (b.size, k + 1) . Initialize

3: H ← zeros (k + 1, k)

4: Q[:,0] = b/‖b‖2
5: for n = 1, 2, . . . , k do

6: Set entries of Q and H as in Arnoldi iteration

7: Calculate least squares solution y of 1.2.

8: Calculate the residual r given by Equation 1.3.

9: if r < tol then

10: return Q[:,n+1]y, r

11: return Q[:,n+1]y, r

Problem 1. Use Algorithm 1.1 to complete the following Python function

implementing the GMRES algorithm.

def gmres(b, Amul, k=100, tol=1E-8):

'''Use the GMRES algorithm to approximate the solution to Ax=b, where ←↩
A is the linear operator defined by `Amul'.

INPUTS:

b - A NumPy array.

Amul - A function handle. Should describe a linear operator.

k - Maximum number of iterations of the GMRES algorithm. Defaults ←↩
to 100.

tol - Stop iterating if the residual is less than `tol'. Defaults to ←↩
1E-8.

RETURN:

Return (y, res) where `y' is an approximate solution to Ax=b and `res'←↩
is the residual.

Examples:

>>> A = np.array([[1,0,0],[0,2,0],[0,0,3]])

>>> Amul = lambda x: A.dot(x)

>>> b = np.array([1, 4, 6])

>>> gmres(Amul, b)

(array([1., 2., 2.]), 1.5083413465299765e-17)

'''

You make make the following assumptions:

1. The input b is a real array and the function Amul() always outputs real

arrays.

2. The vectors found by the Arnoldi iteration will never be zero. In other

words, b will never be in a proper invariant subspace of A.

3

Hint: Use scipy.linalg.lstsq() to solve the least squares problem.

Convergence of GMRES

At the n-th iteration, GMRES computes the best approximate solution x ∈ Kn to

Ax = b. If A is full rank, then Km = Fm, so the mth iteration will always return

an exact answer. However, we say the algorithm converges after n steps if the nth

residual is sufficiently small.

The rate of convergence of GMRES depends on the eigenvalues of A.

Problem 2. Finish the following Python function by modifying your solu-

tion to Problem 1.

def plot_gmres(b, A, tol=1E-8):

'''Use the GMRES algorithm to approximate the solution to Ax=b.

INPUTS:

b - A 1-D NumPy array of length m.

A - A 2-D NumPy array of shape mxm.

tol - Stop iterating and create the desired plots if the residual is

less than `tol'. Defaults to 1E-8.

OUTPUT:

Follow the GMRES algorithm until the residual is less than tol, for a

maximum of m iterations. Then create the two following plots (subplots

of a single figure):

1. Plot the eigenvalues of A in the complex plane

2. Plot the convergence of the GMRES algorithm by plotting the

iteration number on the x-axis and the residual on the y-axis.

Use a log scale on the y-axis.

'''

Use this function to investigate the convergence of GMRES as follows.

Define an m×m matrix

An = nI + P,

where I is the m×m identity matrix and P is a m×m matrix of numbers

from a random normal distribution with mean 0 and standard deviation

1/(2
√
m). Call plot_gmres on An for n = −4,−2, 0, 2, 4. Use m = 200 and

let b be an array of ones. What do you conjecture about the convergence of

the GMRES algorithm?

Hints:

1. After creating a plot in matplotlib, change the y-axis to have a log

scale with the command plt.gca().set_yscale('log').

4 Lab 1. GMRES

2. Create a matrix with entries from a random normal distribution with

np.random.rand().

3. Output for n = 2, m = 200 is in Figure 1.1 below.

Ideas for this problem were taken from Trefethen [TODO: cite better].

0 2 4 6 8 10 12 14
10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

1.4 1.6 1.8 2.0 2.2 2.4 2.6
0.6

0.4

0.2

0.0

0.2

0.4

0.6

Figure 1.1: The left plot is the eigenvalues of the matrix A2, which is defined

in Problem 2. The right plot is the convergence of the GMRES algorithm on

A2 with starting vector b = (1, 1, . . . , 1). This figure is one possible output

of the function plot_gmres().

Breakdowns in GMRES

One of the selling points of GMRES is that it can’t break down unless it has

reached an exact solution. Why is this the case? Breakdowns can occur as we try

to expand to larger Krylov subspaces. In each iteration, we have already converted

b, Ab,A2b, · · · , An−1b into an orthonormal set q0, q1, · · · , qn−1. After computing

Anb, we will try to make it orthogonal to each of the qi. But what if Anb is already

a linear combination of the qi? In other words, what if Anb lies in Kn−1? This

means that

Kn−1 = Kn = Kn+1 = · · · ,

so we have reached an invariant subspace, and the algorithm cannot proceed without

modification. It also means that Anb = c0b+ c1Ab+ · · ·+ cn−1A
n−1b. Rearranging

this, we have that c0b = c1Ab+ c2A
2b+ · · ·+Anb, so that b lies in Kn+1. Therefore,

b lies in AKn, so the least-squares problem will actually deliver an exact solution,

up to rounding errors, in this case. To summarize: GMRES only breaks down when

it has found an exact solution.

5

Problem 3. If necessary, update your solution to 1 to deal with breakdowns.

Consider any division by zero cases in your code. Make the necessary ad-

justments to avoid any such cases.

Optimizing Least-Squares for GMRES (Optional)

The Hessenberg structure and the Krylov subspace relations enable us to save time

on the least-squares part of the problem if we use QR factorization. Observe that

if Hn can be factored as QnRn, where Qn is not the same matrix as above and Rn

is invertible upper triangular, we may solve the least squares problem by simply

solving Rnxn = ‖b‖QH
n e1 via back substitution. There are two ways in which we

can speed up this process. First, we take advantage of the Hessenberg structure by

using the techniques from Problem ?? in Lab ??. Recall that the technique in this

situation was to use Givens rotations to eliminate the subdiagonal elements one at

a time. This process, which was part of a previous lab, reduces the operation count

from O(n3) to O(n2). The second speedup comes from the fact that we already

know the QR factorization for Hn−1 from the previous step of the algorithm. This

means that we can simply update the QR factorization from the previous step rather

than computing it all over again. Since Hn has only one more column and row than

Hn−1, all we need to do is update the last column by performing all previous Givens

rotations on just the last column of Hn, which requires only O(n) work. Then we

perform one final Givens rotation on Hn to eliminate the new subdiagonal entry

which was not present in Hn−1. Thus, the QR factorization of Hn can be reduced

from an O(n3) process to only O(n) using these special techniques.

The back substitution necessary to solve the least squares problem can also be

reduced to an operation of O(n).

The speedup from O(n3) to O(n) is very good, but it can only partially alleviate

the problems that come with a problem that is ill-suited for GMRES. It may still

be useful because it allows us to perform more iterations in a reasonable amount of

time. In many situations, the simple technique of the next section will keep n low

enough that the optimizations from this section are not critical.

GMRES(k)

One of the serious drawbacks of GMRES is that it requires a lot of storage. At step

n, we need to store Hn and Qn, so the storage is O(n2). It is also true that the

complexity of the each iteration increases as n increases, a fact that can substantially

slow down the process. If we want the iteration to proceed over many steps, these

challenges can become prohibitive, so there is a modification called GMRES(k),

or GMRES with restarts, that seeks to alleviate these difficulties by restarting the

algorithm, but with an improved initial guess. It then builds the Krylov subspaces

generated by this improved initial guess and repeats the process as many times as

needed. Here’s the outline of the algorithm:

6 Lab 1. GMRES

1. Set k, the maximum number of iterations before memory requirements or

complexity are too large

2. Set b, the initial guess

3. while i < k and convergence is not yet reached and the number of times

through this while loop is less than a set maximum

Run GMRES for up to k iterations, starting with initial guess

If convergence has not yet occurred, set initial guess to equal the most

recent estimate of the solution

This process keeps storage under control and ensures that each iteration stays

fast, but at the cost of reliability. Thus, when GMRES(k) does converge, it may

be much quicker and require less storage than GMRES without restarts, but in

situations where the true solution, x is nearly orthogonal to the first k Krylov

subspaces, not much improvement is made at each iteration, so convergence is slow

or may fail entirely. This is, however, an important variation of GMRES and is

frequently used.

Problem 4. Adapt your prior implementation of GMRES to include restarts.

It should also take the additional argument k, the number of iterations before

restarting. Test its speed on the special 1000×1000 matrices we constructed

to test GMRES and compare its speed to GMRES without restarts. No

general statement can be made about the comparative speed of these two

algorithms. How do they compare in the case of these matrices with k = 10

and A has dimension 1000× 1000?

Industrial-grade GMRES package

In practice, of course, you will most frequently use GMRES algorithms written

by specialists rather than writing your own version. In python, one option is the

function scipy.sparse.linalg.gmres. It also includes an option to specify whether

restarts are needed.

Problem 5. Test your GMRES algorithm against SciPy’s GMRES algo-

rithm on random 500×500 matrices, and report any difference on how quickly

convergence is reached.

Summary

In this lab, we developed the mathematical basis for GMRES, practiced implement-

ing and working with the algorithm, and explored several variations and optimiza-

tions which, when used in conjunction and in the right situations, make GMRES the

7

go-to algorithm for many, many applications. Avoid falling into the trap of thinking

that GMRES is a universal solution to all systems of equations dilemmas, since we

have already seen that even for simple random matrices, GMRES has horrendous

performance. Learning and knowing when to apply a variety of algorithms is key

to effective computing with large matrices.

	GMRES

