
Lab 1

Diffie-Hellman Key
Exchange

Lab Objective: Understand a method of sharing secrets over insecure channels.

In cryptography, a key is a piece of secret information that is required to either

encrypt or decrypt a message. A cipher (or code) is symmetric if it uses the same

key for both encryption and decryption. People have used symmetric ciphers since

ancient history. For example, the ancient Greeks used substitution ciphers, the

Nazis used Enigma, and people today use AES and Twofish.

For Alice and Bob to use a symmetric cipher, they must first agree on a key. A

key exchange algorithm is a way to do this so that even if an enemy Eve intercepts

all the information passed between Alice and Bob, she will not be able to deduce

the key. The Diffie-Hellman key exchange was the first such algorithm, and it is

frequently used today.

One-Time Pad (Optional)

In this section we introduce a basic symmetric cipher with modern uses: the one-

time pad. This cipher is outlined below.

• The key is a number.

• Encrypt a message by

1. converting it to a number

2. then adding the key bitwise. This means that binary digits are added

with no carrying; for example, 1010 + 11 = 1001.

• Decrypt the ciphertext by

1. adding the key to it bitwise

2. then converting the resulting number back into text.

1



2 Lab 1. Diffie-Hellman Key Exchange

The security of a one-time pad is compromised when the key is reused to encrypt

another message.

For example, suppose we wish to encrypt the message SECRET. One way to

convert this message to a number is to use the substitution cipher A = 10, B =

11, . . . , Z = 35. With this rule, SECRET=281412271429. To encrypt this message,

we must choose a key that is larger than 281412271429. We choose 987654321000.

We perform the bitwise addition in Python with the caret operator ^.

>>> message = 281412271429

>>> key = 987654321000

>>>

>>> ciphertext = message^key # Encode the message

>>> ciphertext

706282163757

>>>

>>> message == ciphertext^key # Decode the message

True

Problem 1. For this problem, use the substitution cipher A = 11, . . . de-

scribed above, with the additional rule ’ ’=36.

1. Encrypt the message ‘PRIVATE INFO’ with the key 987654321098765432109876.

2. Decrypt the message 153931672663401143 with the key 12345678901234567890.

Diffie-Hellman key exchange algorithm

The Diffie-Hellman key exchange uses primitive roots modulo a prime.

Primitive roots

Let p be a prime number. A positive number a is a primitive root modulo p if the

positive powers a1, a2, . . . , ap−1 generate all nonzero congruence classes modulo p.

For example, let p = 7. Then a = 2 is not a primitive root, since

21 = 2, 22 = 4, 23 ≡ 1, 24 ≡ 2, 25 ≡ 4, 26 ≡ 1 (mod 7).

The powers of 2 never hit the classes 3, 5, or 6 modulo 7. However, 3 is a primitive

root since

31 = 3, 32 ≡ 2, 33 ≡ 6, 34 ≡ 4, 35 ≡ 5, 36 ≡ 1 (mod 7).

That is, each congruence class (mod 7) appears as a power of 3.

Diffie-Hellman algorithm

Here is an outline of how Alice and Bob can perform a Diffie-Hellman key exchange:

Joey
Pencil

Joey
Text Box
A = 10,...



3

• Alice and Bob (publicly) agree on a prime p and a primitive root g.

• Alice and Bob each secretly choose an integer, x and y respectively.

• Alice computes A = gx (mod p) while Bob computes B = gy (mod p).

• Alice and Bob exchange A and B (still keeping x and y secret).

• Alice computes Bx (mod p) and Bob computes Ay (mod p). They get the same

answer,

k ≡ Bx ≡ (gy)x ≡ (gx)y ≡ Ay (mod p).

Now Alice and Bob can use k as a secure key for a symmetric cipher. One advantage

of this algorithm is that Alice and Bob can use the same prime p and root g to

generate a new secure key, simply by picking new integers x and y.

The key idea of the Diffie-Hellman algorithm is that (gx)y ≡ (gy)x (mod p). We

do an example of this in Python with p = 41, g = 6, x = 10, and y = 13. The

function pow(a, b, n) computes ab (mod n).

>>> A = pow(6, 10, 41)

>>> B = pow(6, 13, 41)

>>> pow(A, 13, 41)

32

>>> pow(B, 10, 41)

32

Problem 2. With a partner, perform a Diffie-Hellman key exchange with

p = 21929 and g = 3.

The Diffie-Hellman can also be used to create a secure key shared by n > 2

people. If n people choose private exponents x1, . . . , xn, then the secure key will be

gx1...xn .

Problem 3. Work out a method by which n people can use Diffie-Hellman

to create a secure key. Remember that only the ith person knows the ith

exponent xi. With a group of at least 3 people, perform such an exchange

with p = 21929 and g = 3.

Security of Diffie-Hellman

Why is the Diffie-Hellman algorithm secure? Suppose a third party, Eve, intercepts

p, g, A, and B If she can compute x and y, she easily compute k just as Alice and

Bob did. Then Eve must compute x satisfying A ≡ gx (mod p). This computation

is known as taking a discrete logarithm of A and there are no fast algorithms for

doing it. When p is large, say 100s of digits, calculating a discrete logarithm is

effectively impossible.

Joey
Pencil



4 Lab 1. Diffie-Hellman Key Exchange

Practical Considerations

For Diffie-Hellman to be a practical key exchange algorithm, we need an efficient

way to find primitive roots and perform modular exponentiation.

Finding primitive roots

The only way to find the primitive roots of p is to test numbers a < p until a

primitive root is found. One test to see if a is a primitive root is as follows.

First, factor p − 1 as a product of primes, say p = pk1
1 . . . pkn

n . Then, for each

prime pi in the factorization, compute a(p−1)/pi (mod p). If for any i we find

a(p−1)/pi ≡ 1 (mod p), then a is NOT a primitive root. Otherwise, a is a primitive

root.

As an example we look for a primitive root of p = 41. We factor p − 1 = 40

using the function factorint() from SymPy.

>>> from sympy import factorint

>>> factorint(40)

{2: 3, 5: 1}

This output means that 40 = 23 · 51. Then the powers to check are 40/2 = 20 and

40/5 = 8. The following code shows that 2 is not a primitive root modulo 41, since

220 ≡ 1 (mod 41).

>>> pow(2, 20, 41)

1

However, 6 is a primitive root modulo 41, as the following code shows.

>>> pow(6, 8, 41)

10

>>> pow(6, 20, 41)

40

The idea behind this algorithm is that if an ≡ 1 (mod p) for some n < p − 1,

then a will not be a primitive root. Instead, powers of a will repeat and miss some

congruence classes, as they did in the example of 2 (mod 7). For “group-theoretic”

reasons, if an ≡ 1 (mod p) for some n < p− 1 (i.e., a is not a primitive root), then

there must be some pi such that a(p−1)/pi ≡ 1 (mod p). So, instead of checking all

powers of a modulo p, we only need to check the powers (p− 1)/pi for all i.

Problem 4. Write the following function to test if a is a primitive root

modulo p.

def is_primitive(root, mod):

'''Determine whether `root' is a primitive root modulo `mod'.

INPUTS:

root - A positive integer.

mod - A prime integer.

Joey
Text Box
p-1

Joey
Line

Joey
Pencil



5

Return a Boolean value.

'''

Fast modular exponentiation

For RSA to be a reasonably fast cryptosystem, we need a fast algorithm for modular

exponentiation. As an example, suppose we wish to compute 5064361 (mod 19673).

The näıve way is to multilply 5064 by itself 361 times, producing an enormous

number, and then mod this number by 19673. A slightly better way is to take the

modulus after each multiplication by 5064, since this way we do not store such a

large number.

Problem 5. Write the following function to implement the algorithm for

modular exponentiation outlined above.

def power1(base, exp, mod):

''' Return base^exp modulo `mod'.

Multiply `base' by itself `exp' times, taking the modulus after each

multiplication.

Example:

>>> power1(5064, 361, 19673)

994

'''

Time your function against Python’s built in pow() function. What is the

difference in speed?

If you did Problem 5, you know that Python’s exponentiation method is or-

ders of magnitude faster than the näıve method outlined above. This increase in

performance is acheived with the right-to-left binary method of exponentiation.

This idea of this method is as follows. To compute a361 (mod 19673), we first

write 361 in binary as 101101001. Thus,

a361 = a2
0+23+25+26+28 = a2

0

a2
3

a2
5

a2
6

a2
8

(mod 19673). (1.1)

We can quickly compute the integers

a = a2
0

, a2 = a2
1

, a2
2

, . . . , a2
8

(mod 19673)

by squaring each term to get the next. Then, to compute (1.1), we simply multiply

the appropriate terms from this series.

Joey
Text Box
13172

Joey
Line

Joey
Pencil



6 Lab 1. Diffie-Hellman Key Exchange

Problem 6. Implement the right-to-left binary method with the following

function.

def power2(base, exp, mod):

''' Return base^exp modulo `mod'.

Compute the result using the right-to-left binary method.

Example:

>>> power2(5064, 361, 19673)

994

'''

Do not at any point use Python’s built-in exponentiation methods. Compare

the speed of this function to that of the function in Problem 5 and Python’s

pow() function. Even with a näıve implementation of the right-to-left binary

method, you should see significant improvement over the power1() function.


	Diffie-Hellman Key Exchange



