
Lab 1

Optimization with Scipy

Lab Objective: Introduce some of the basic optimization functions available in

scipy.optimize

The Optimize package in Scipy has several functions for minimizing, root find-

ing, and curve fitting. Here we will cover the usage of many of these functions.

You can learn about all of the functions at http://docs.scipy.org/doc/scipy/

reference/optimize.html.

First we will test out a few of the minimization algorithms on the Rosenbrock

Function, which is defined as

f(x, y) = (1 − x)2 + 100(y − x2)2.

The Rosenbrock function is commonly used when evaluating the performance of

an optimization algorithm. Reasons for this include the fact that its minimizer is

found in a curved valley, and so minimizing the function is non-trivial. See Figure

1.1. The Rosenbrock function is included in the optimize package (as rosen), as well

as its gradient (rosen_der) and its hessian (rosen_hess).

We will use the minimize function and test each of its algorithms (specified by the

keyword argument “method” – see the documentation page for minimize). Note that

there are also several functions such as fmin and fmin_powell. These are equivalent

to using the minimize function with the specified method.

For each algorithm, you need to pass in a callable function object for the Rosen-

brock function, as well as a NumPy array giving the initial guess. For some al-

gorithms, you will additionally need to pass in the jacobian or hessian. You may

recognize some of these algorithms, and several of them will be discussed in greater

detail later. For this lab, you do not need to understand how they work, just how

to use them.

Problem 1. Import the scipy.optimize module as opt. Now use the opt.

minimize function to find the minimum of the Rosenbrock function. Test

Nelder-Mead, Powell, CG, BFGS, Newton-CG, Anneal, L-BFGS-B, TNC,

COBYLA, SLSQP.
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Figure 1.1: f(x, y) = (1 − x)2 + 100(y − x2)2

The Newton-CG method takes in the jacobian and can take in the hessian.

Test it with and without the hessian. Part of the output of opt.minimize is

the number of iterations each algorithm took (sometimes outputted as nit).

Start with the initial guess x_0 = np.array([4., -2.5]). Which algorithm(s)

take(s) the least number of iterations? Which of the algorithms fail to find

the (correct) minimum of the Rosenbrock? For your solution, print the

answers to these two questions.

As an example, we’ll minimize the Rosenbrock with the Nelder-Mead

method.

>>> import numpy as np

>>> from scipy import optimize as opt

>>> x0 = np.array([4., -2.5])

>>> opt.minimize(opt.rosen, x0, method='nelder-mead', options={'xtol': 1e←↩
-8})

status: 0

nfev: 184

success: True

fun: 2.4359782685672914e-18

x: array([ 1., 1.])

message: 'Optimization terminated successfully.'
nit: 96
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Figure 1.2: z = r2(1 + 2 sin2(4r))

The printed output gives you information on the performance of the algo-

rithm. In particular, the line x: array([ 1., 1.]) gives the obtained mini-

mizer, and the final line nit: 96 gives the number of iterations.

In the realm of optimization, convex functions are the most well-behaved, as

any local minimum is a global minimum. However, in practice one must frequently

deal with non-convex functions, and sometimes we need pick the global minimum

out of many local minima.

For example, consider the function

z = r2(1 + sin2(4r)),

where

r =
√

(x+ 1)2 + y2.

Essentially, this is a wavy crater offset from the origin by 1 along the x axis (see

Figure 1.2). The presence of many local minima proves to be a difficulty for the

minimization algorithms.

For example, if we use the opt.fmin function (which employs the Nelder-Mead

method), the algorithm fails to find the global minimum, and instead comes to rest

on a local minimum.

>>> def multimin(x):

>>> r = np.sqrt((x[0]+1)**2 + x[1]**2)

>>> return r**2 *(1+ np.sin(4*r)**2)

>>>

>>> x0 = np.array([-2, -2])

>>> res = opt.fmin(multimin, x0, xtol=1e-8, disp=True)

Optimization terminated successfully.

Current function value: 5.488169

Iterations: 56

Function evaluations: 132
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>>> print res

[-2.03513929 -2.08611595]

>>> print multimin(res)

5.48816865696

>>> print multimin([-1,0])

0.0

However, SciPy does have some tools to help us with these problems. Specifi-

cally, we can use the opt.basinhopping function. Conceptually, most of the minimizing

algorithms use the derivative of the function to search in a downhill direction for

potential minimizers. Often they overshoot the minimum and later backtrack. You

can think of it as a ball rolling down a hill into a valley. At first, the momentum of

the ball carries it across the valley floor and partially up the other wall, only to roll

back into the valley. Slowly the ball loses momentum as it repeatedly overshoots

and backtracks. Eventually the ball comes to rest at the bottom of a valley – hope-

fully the lowest valley. However, if there are many valleys (or local minima), the ball

can get stuck in one that’s not the lowest. The opt.basinhopping function uses the

same minimizing algorithms (in fact, you can tell it whatever minimizing algorithm

you can pass to opt.minimize). However, once it settles on a minimum, it hops to a

new point in the domain (depending on how we set the “hopping” distance) that

hopefully lies outside of the valley or basin belonging to the current local minimum.

It then searches for the minimum from this new starting point, and if it finds a

better minimizer, it repeats the hopping process from this new minimizer.

Only Scipy Version 0.12+ has opt.basinhopping. In earlier versions, such as 0.11,

you won’t find it.

Problem 2. Look at the documentation for the opt.basinhopping function

online and use it to find the global minimum of our multimin function with x0

= np.array([-2, -2]). Use the same Nelder-Mead algorithm with the same xtol

. Call it with opt.basinhopping(multimin, x0, stepsize=0.5, minimizer_kwargs={

'method':'nelder-mead'}). Try it first with stepsize=0.5 and then with stepsize

=0.2. Why doesn’t it find the minimum the second time? Print your answer

to this question, and return the minimum value the of the function with

stepsize=0.2.

The optimize package also has functions useful in root-finding. The next exam-

ple, taken from the online documentation, solves the following nonlinear system of

equations using opt.root.[
x0 + 1/2(x0 − x1)3 − 1

1/2(x1 − x0)3 + x1

]
=

[
0

0

]
.

>>> def func(x):

>>> return [x[0] + 0.5 * (x[0] - x[1])**3 -1.0,

>>> 0.5 * ( x[1] - x[0])**3 + x[1]]

>>> def jac(x):

>>> return np.array([[1 + 1.5 * (x[0] - x[1])**2,

>>> -1.5 * (x[0] - x[1])**2],
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>>> [-1.5 * (x[1] - x[0])**2,

>>> 1 + 1.5 * (x[1] - x[0])**2]])

>>> sol = opt.root(func, [0, 0], jac=jac, method='hybr')
>>> print sol.x

[ 0.8411639 0.1588361]

>>> print func(sol.x)

[-1.1102230246251565e-16, 0.0]

Problem 3. Find the roots of the system −x+ y + z

1 + x3 − y2 + z3

−2 − x2 + y2 + z2

 =

0

0

0

 .
Return the values of x, y, z as an array.

As with opt.minimize, opt.root has more than one algorithm for root finding.

Here we have used the hybr method. There are also several algorithms for scalar

root finding. See the online documentation for more.

SciPy also has methods for curve fitting wrapped by the opt.curve_fit function.

Just pass it data and a function to be fit. The function should take in the in-

dependent variable as it’s first argument and values for the fitting parameters as

subsequent arguments. Examine the following example from the online documen-

tation.

>>> import numpy as np

>>> import scipy.optimize as opt

>>> #the function with which to create the data and later fit it

>>> def func(x,a,b,c):

>>> return a*np.exp(-b*x) + c

>>> #create perturbed data

>>> x = np.linspace(0,4,50)

>>> y = func(x,2.5,1.3,0.5)

>>> yn = y + 0.2*np.random.normal(size=len(x));

>>> #perform the fit

>>> popt, pcov = curve_fit(func,x,yn)

The variable popt now contains the fitted parameters and pcov gives the covariance

of the fit. See Figure 1.3 for a plot of the data and the fitted curve.

Problem 4. Use the opt.curve_fit function to fit a heating curve to data

obtained from a temperature sensitive diode embedded in a cylindrical alu-

minum block. The data are in the file heating.txt. The first column is time

and the second column is temperature in the Kelvin scale. The tempera-

ture in the block was measured as it warmed from 290K up to 370K using a
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Figure 1.3: Perturbed data graphed with the curve using the fitted parameters:

a = 2.72, b = 1.31, and c = 0.45.

heating coil wound around the block attached to a copper rod which sat in

a cooling bath of liquid nitrogen. Newton’s law of cooling has the following

form:

T = T∞ +
P

γ
+Ke−

γt
C ,

where T is the temperature (in Kelvin), t is the time, P is the power used

to warm it (which here was 59.43 watts), T∞ is the ambient temperature

(290K), γ is a coefficient of heat transfer through the copper rod, C is the

total heat capacity of the block, and K is a constant coefficient that depends

on the initial conditions. Use opt.curve_fit to find a fit to the data using

γ, C, and K as the fitting parameters. Just so that you know that you are

getting realistic values, γ should be on the order of 10−1, C on the order of

102, and K should be negative on the order of 102. Return your values for

γ, C, and K in a NumPy array of length 3.

See Figure 1.4 for a plot of the data along with a fitted curve.

The scipy.optimize package has many other useful functions, and is a good first

resource when confronting a numerical optimization problem. See the online docu-

mentation for further details.
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Figure 1.4: The black line is actually the data from heating.txt plotted as a scatter

plot. It appears as a line because the data is very dense. The blue line is a fitted

curve.
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