
Lab 1

CVXOPT

Lab Objective: Introduce some of the basic optimization functions available in

the CVXOPT package

You can learn more about CVXOPT at

http://abel.ee.ucla.edu/cvxopt/documentation/.

Linear Programs

CVXOPT is a package of Python functions and classes designed for the purpose of

convex optimization. In this lab we will focus on linear and quadratic programming.

A linear program is a linear constrained optimization problem. Such a problem can

be stated in several different forms, one of which is

minimize cTx

subject to Gx + s = h

Ax = b

s ≥ 0.

This is the formulation used by CVXOPT. In this formulation, we require that the

matrix A has full row rank, and that the block matrix [G A]T has full column

rank.

Note that the constraint Gx+s = h includes the term s, which is not part of the

objective function, and is known as the slack variable. Since s ≥ 0, the constraint

Gx + s = h is equivalent to Gx ≤ h.

The corresponding dual program for the above linear program has the form

maximize − hT z − bT y

subject to GT z + AT y + c = 0

z ≥ 0.

CVXOPT provides functions to solve both the original (primal) linear program and

its dual program.
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Consider the following example:

minimize − 4x1 − 5x2

subject to x1 + 2x2 ≤ 3

2x1 + x2 ≤ 3

x1, x2 ≥ 0

The final two constraints, x1, x2 ≥ 0, need to be adjusted to be ≤ constraints. This

is easily done by multiplying by −1, resulting in the constraints −x1,−x2 ≤ 0. If

we define

G =


1 2

2 1

−1 0

0 −1


and

h =


3

3

0

0

 ,

then we can express the constraints compactly as

Gx ≤ h,

where

x =

[
x1

x2

]
.

By adding a slack variable s, we can write our constraints as

Gx + s = h,

which matches the form discussed above. In the case of this particular example, we

ignore the extra constraint

Ax = b,

since we were given no equality constraints.

Now we proceed to solve the problem using CVXOPT. We need to initialize the

arrays c, G, and h, and then pass them to the appropriate function. CVXOPT uses

its own data type for an array or matrix, and while similar to the NumPy array,

it does have a few differences, especially when it comes to initialization. Below, we

initialize CVXOPT matrices for c, G, and h.

>>> from cvxopt import matrix

>>> c = matrix([-4., -5.])

>>> G = matrix([[1., 2., -1., 0.],[2., 1., 0., -1.]])

>>> h = matrix([ 3., 3., 0., 0.])

Observe that CVXOPT matrices are initialized column-wise rather than row-wise

(as in the case of NumPy).

Alternatively, we can initialize the arrays first in NumPy (a process with which

you should be familiar), and then simply convert them to the CVXOPT matrix

data type:
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>>> import numpy as np

>>> c = np.array([-4., -5.])

>>> G = np.array([[1., 2.],[2., 1.],[-1., 0.],[0., -1]])

>>> h = np.array([3., 3., 0., 0.])

>>> #Now convert to CVXOPT matrix type

>>> c = matrix(c)

>>> G = matrix(G)

>>> h = matrix(h)

Use whichever method is most convenient. Note that we made sure the entries in

the matrices are floats.

Having initialized the necessary objects, we are now ready to solve the problem.

We will use the CVXOPT function solvers.lp, and we simply need to pass in c, G,

and h as arguments.

>>> from cvxopt import solvers

>>> sol = solvers.lp(c, G, h)

pcost dcost gap pres dres k/t

0: -8.1000e+00 -1.8300e+01 4e+00 0e+00 8e-01 1e+00

1: -8.8055e+00 -9.4357e+00 2e-01 1e-16 4e-02 3e-02

2: -8.9981e+00 -9.0049e+00 2e-03 1e-16 5e-04 4e-04

3: -9.0000e+00 -9.0000e+00 2e-05 1e-16 5e-06 4e-06

4: -9.0000e+00 -9.0000e+00 2e-07 1e-16 5e-08 4e-08

Optimal solution found.

>>> print sol['x']
[ 1.00e+00]

[ 1.00e+00]

>>> print sol['primal objective']
-8.99999981141

The function solvers.lp returns a dictionary containing useful information. For the

time being, we will only focus on the values of x and the primal objective value (i.e.

the minimum value achieved by the objective function).

Problem 1. Solve the following convex optimization problem:

minimize 2x1 + x2 + 3x3

subject to x1 + 2x2 ≥ 3

2x1 + x2 + 3x3 ≥ 10

x1 ≥ 0

x2 ≥ 0

x3 ≥ 0

Report the values for x and the primal objective value that you obtain. Re-

member to make the necessary adjustments so that all inequality constraints

are ≤ rather than ≥.
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The Transportation Problem

Consider the following transportation problem: A piano company needs to transport

thirteen pianos from their three supply centers (denoted by 1, 2, 3) to two demand

centers (4, 5). Transporting a piano from a supply center to a demand center incurs

a cost, listed in Table 1.3. The company wants to minimize shipping costs for the

pianos while meeting the demand. How many pianos should each supply center

send to each demand center?

Supply Center Number of pianos available

1 7

2 2

3 4

Table 1.1: Number of pianos available at each supply center

Demand Center Number of pianos needed

4 5

5 8

Table 1.2: Number of pianos needed at each demand center

Supply Center Demand Center Cost of transportation Number of pianos

1 4 4 p

1 5 7 q

2 4 6 r

2 5 8 s

3 4 8 t

3 5 9 u

Table 1.3: Cost of transporting one piano from a supply center to a demand center

The variables p, q, r, s, t, and u must be nonnegative and satisfy the following

three supply constraints and two demand constraints:

p + q = 7

r + s = 2

t + u = 4

p + r + t = 5

q + s + u = 8

The objective function is the number of pianos shipped from each location mul-

tiplied by the respective cost:

4p + 7q + 6r + 8s + 8t + 9u.

There a several ways to solve this linear program. We want our answers to be

integers, and this added constraint in general turns out to be an NP-hard problem.
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There is a whole field devoted to dealing with integer constraints, called integer

linear programming, which is beyond the scope of this lab. Fortunately, we can

treat this particular problem as a standard linear program and still obtain integer

solutions.

Here, G and h constrain the variables to be non-negative. Because CVXOPT

uses the format Gx ≤ h, we see that G must be a 6 × 6 identity matrix multiplied

by −1, and h is just a column vector of zeros. The matrices A and b represent the

supply and demand constraints, since these are equality constraints. Try initializing

these arrays and solving the linear program by entering the code below. (Notice

that we pass more arguments to solvers.lp since we have equality constraints.)

>>> c = matrix([4., 7., 6., 8., 8., 9])

>>> G = matrix(-1*np.eye(6))

>>> h = matrix(np.zeros(6))

>>> A = matrix([[1., 0., 0., 1., 0.],

[1., 0., 0., 0., 1.],

[0., 1., 0., 1., 0.],

[0., 1., 0., 0., 1.],

[0., 0., 1., 1., 0.],

[0., 0., 1., 0., 1.]])

>>> b = matrix([7., 2., 4., 5., 8])

>>> sol = solvers.lp(c, G, h, A, b)

pcost dcost gap pres dres k/t

0: 8.9500e+01 8.9500e+01 2e+01 4e-17 2e-01 1e+00

Terminated (singular KKT matrix).

>>> print sol['x']
[ 3.00e+00]

[ 4.00e+00]

[ 5.00e-01]

[ 1.50e+00]

[ 1.50e+00]

[ 2.50e+00]

>>> print sol['primal objective']
89.5

Notice that some problems occurred. First, CVXOPT alerted us to the fact that the

algorithm terminated prematurely (due to a singular matrix). Further, the solution

that was obtained does not consist of integer entries.

So what went wrong? Recall that the matrix A is required to have full row rank,

but we can easily see that the rows of A are linearly dependent. We rectify this

by converting some of the equality constraints into inequality constraints, so that

the remaining equality constraints define a new matrix A with linearly independent

rows.

Rather than fuss about which equality constraints to convert into inequality

constraints, let us simply convert all of the equality constraints. This is done as

follows:

Suppose we have the equality constraint

x + 2y − 3z = 4.

This is equivalent to the pair of inequality constraints

x + 2y − 3z ≤ 4,

x + 2y − 3z ≥ 4.
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Of course, we require only ≤ constraints, so we obtain the pair of constraints

x + 2y − 3z ≤ 4,

−x− 2y + 3z ≤ −4.

Apply this process to each of the equality constraints. You will obtain a new ma-

trix G with several additional rows (to account for the new inequality constraints),

and a new vector h, also with more entries. Having done this, we no longer have

equality constraints A and b, so these can be ignored.

Problem 2. Solve the problem by converting all equality constraints into

inequality constraints. Report the optimal values for x and the primal ob-

jective function.

Quadratic Programming

Quadratic programming is similar to linear programming, one exception being that

the objective function is quadratic rather than linear. The constraints, if there are

any, are still of the same form. Thus G, h,A, and b are optional. The formulation

that we will use is

minimize
1

2
xTQx + pTx

subject to Gx ≤ h

Ax = b,

where Q is a positive semidefinite symmetric matrix. In this formulation, we require

again that A has full row rank, and that the block matrix [P G A]T has full

column rank.

As an example, let us minimize the quadratic function

f(x, y) = 2x2 + 2xy + y2 + x− y.

Note that there are no constraints, so we only need to initialize the matrix Q and

the vector p.

>>> Q = matrix([[4., 2.], [2., 2.]])

>>> p = matrix([1., -1.])

>>> sol=solvers.qp(Q, p)

>>> print(sol['x'])
[-1.00e+00]

[ 1.50e+00]

>>> print sol['primal objective']
-1.25

Building the matrix Q from the function f is straightforward. The coefficients for

each squared term are doubled (because in the formulation we use we are minimizing

1/2 of the x2 term) and then placed on the main diagonal of Q (so the term 2x2
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yields 4 in the upper left entry of Q, and the term y2 yields 2 in the lower right

entry). The coefficient of each mixed term appears twice in the matrix (and hence

does not need to be doubled), corresponding to the row and column of the two

variables in the mixed term (so the term 2xy yields a 2 placed in the first row,

second column, and a 2 in the second row, first column).

Problem 3. Find the minimizer and minimum of

g(x, y, z) =
3

2
x2 + 2xy + xz + 2y2 + 2yz +

3

2
z2 + 3x + z

Allocation Models

Allocation models lead to simple linear programs. An allocation model seeks to

allocate a valuable resource among competing needs. The following example is

taken from “Optimization in Operations Research” by Ronald L. Rardin.

The U.S. Forest service has used an allocation model to deal with the task of

managing national forests. The model begins by dividing the land into a set of

analysis areas. Several land management policies (also called prescriptions) are

then proposed and evaluated for each area. An allocation is an assignment of land

(in acreage) in each analysis area to each of the prescriptions for that analysis area.

We seek to find the best possible allocation, subject to forest-wide restrictions on

land use.

The file ForestData.npy contains data for a fictional national forest (you can also

find the data in Table ??). There are 7 areas of analysis and 3 prescriptions for each

of them. The first column is the area of analysis, denoted i. The second column is

the size of the analysis area (in thousands of acres), denoted si. The third column is

a prescription number, denoted j. The forth column is the net present value (NPV)

per acre of all uses in area i under prescription j, and is denoted pi,j . The fifth

column is protected timber yield (in board-feet per acre) in area i under prescription

j, denoted ti,j . The sixth column is protected grazing capability (in animal-unit

months per acre) for area i under prescription j, denoted gi,j . The seventh and

last column is the wilderness index rating (0 to 100) for area i under prescription j,

denoted wi,j . Let xi,j be the amount of land in area i allocated to prescription j.

Under this notation, an allocation is just a vector consisting of the xi,j ’s. For

this particular example, the allocation vector is of size 7 · 3 = 21. Our goal is to

find the allocation vector that maximizes net present value, while producing at least

40 million board-feet of timber, at least 5 thousand animal-unit months of grazing,

and keeping the average wilderness index at least 70.

Of course, the allocation vector is also constrained to be nonnegative, and all of

the land must be allocated precisely.

Note that since acres are in thousands, we divide the constraints of timber and
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Forest Data

Analysis Acres Prescrip- NPV, Timber, Grazing, Wilderness

Area, (1000)’s tion (per acre) (per acre) (per acre) Index,

i si j pi,j ti,j gi,j wi,j

1 75 1 503 310 0.01 40

2 140 50 0.04 80

3 203 0 0 95

2 90 1 675 198 0.03 55

2 100 46 0.06 60

3 45 0 0 65

3 140 1 630 210 0.04 45

2 105 57 0.07 55

3 40 0 0 60

4 60 1 330 112 0.01 30

2 40 30 0.02 35

3 295 0 0 90

5 212 1 105 40 0.05 60

2 460 32 0.08 60

3 120 0 0 70

6 98 1 490 105 0.02 35

2 55 25 0.03 50

3 180 0 0 75

7 113 1 705 213 0.02 40

2 60 40 0.04 45

3 400 0 0 95

animal months of grazing by 1000. We can summarize our problem as follows:

maximize

7∑
i=1

3∑
j=1

pi,jxi,j

subject to

3∑
j=1

xi,j = si for i = 1, .., 7

7∑
i=1

3∑
j=1

ti,jxi,j ≥ 40, 000

7∑
i=1

3∑
j=1

gi,jxi,j ≥ 5

1

788

7∑
i=1

3∑
j=1

wi,jxi,j ≥ 70

xi,j ≥ 0 for i = 1, ..., 7 and j = 1, 2, 3
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Problem 4. Solve the problem above. Output the value of each xi,j and the

maximum total net present value (the primal objective of the appropriately

minimized linear function multiplied by -1000).
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