
Lab 1

Line Search Algorithms

Lab Objective: Investigate various Line-Search algorithms for numerical opti-

mization.

Overview of Line Search Algorithms

Imagine you are out hiking on a mountain, and you lose track of the trail. Thick fog

gathers around, reducing visibility to just a couple of feet. You decide it is time to

head back home, which is located in the valley located near the base of the mountain.

How can you find your way back with such limited visibility? The obvious way

might be to pick a direction that leads downhill, and follow that direction as far as

you can, or until it starts leading upward again. Then you might choose another

downhill direction, and take that as far as you can, repeating the process. By always

choosing a downhill direction, you hope to eventually make it back to the bottom

of the valley, where you live.

This is the basic approach of line search algorithms for numerical optimization.

Suppose we have a real-valued function f that we wish to minimize. Our goal is to

find the point x∗ in the domain of f such that f(x∗) is the smallest value in the

range of f . For some functions, we can use techniques from calculus to analytically

obtain this minimizer. However, in practical applications, this is often impossible,

especially when we need a system that works for a wide class of functions. A

line search algorithm starts with an initial guess at the minimizer, call it x0, and

iteratively produces a sequence of points x1, x2, x3, . . . that hopefully converge to

the minimizer x∗. The basic iteration to move from xk to xk+1 involves two steps:

first, choosing a search direction pk in which to proceed from the current point,

and second, specifying a step size αk to travel in this direction. The next point is

determined by the formula

xk+1 = xk + αkpk.

This procedure is called a line search because at each iteration, we are simply

examining the function in a particular linear direction. The choice of the step size

αk is often chosen by solving a one-dimensional optimization problem in the given

1

2 Lab 1. Line Search Algorithms

direction. In this lab, we will discuss approaches to choosing the step size and the

search direction.

One-Dimensional Newton’s Method

Let us first start out with a basic task: minimizing a function of one variable. We

will use a popular approach known as Newton’s Method, which is a basic line search

algorithm that uses the derivatives of the function to select a direction and step size.

To use this method, we need a real-valued function of a real variable that is twice

differentiable. The idea is to approximate the function with a quadratic polynomial

and then solve the trivial problem of minimizing the polynomial. Doing so in an

iterative manner can lead us to the actual minimizer. Let f be a function satisfying

the appropriate conditions, and let us make an initial guess, x0. The relevant

quadratic approximation to f is

q(x) = f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(x0)(x− x0)2,

or just the second-degree Taylor polynomial for f centered at x0. The minimum for

this quadratic function is easily found by solving q′(x) = 0, and we take the obtained

x-value as our new approximation. The formula for the (n + 1)-th approximation,

which the reader can verify, is

xn+1 = xn −
f ′(xn)

f ′′(xn)
.

In the one dimensional case, there are only two search directions: to the right (+) or

to the left (−). Newton’s method chooses the search direction sign(−f ′(xn)/f ′′(xn))

and the step size |f ′(xn)/f ′′(xn)|.
As is typical with optimization algorithms, Newton’s Method generates a se-

quence of points or successive approximations to the minimizer. However, the con-

vergence properties of this sequence depend heavily on the initial guess x0 and the

function f . Roughly speaking, if x0 is sufficiently close to the actual minimizer,

and if f is well-approximated by parabolas, then one can expect the sequence to

converge quickly. However, there are cases when the sequence converges slowly or

not at all. See Figure 1.1.

Problem 1. Implement Newton’s Method as described using the following

function declaration.

def newton1d(f, df, ddf, x, niter=10):

'''
Perform Newton's method to minimize a function from R to R.

Parameters

f : callable function object

The objective function (twice differentiable)

df : callable function object

The first derivative

ddf : callable function object

3

Figure 1.1: The results of Newton’s Method using two different initial guess. The

global minimizer was correctly found with initial guess of 1. However, an initial

guess of 4 led to only a local minimum.

The second derivative

x : float

The initial guess

niter : integer

The number of iterations

Returns

min : float

The approximated minimizer

'''
pass

Use this function to minimize x2 +sin(5x) with an initial guess of x0 = 0.

Now try other initial guesses farther away from the true minimizer, and note

when the method fails to obtain the correct answer.

4 Lab 1. Line Search Algorithms

General Line Search Methods

Step Size Calculation

We now examine Line Search methods in more generality. Given a differentiable

function f : Rn → R that we wish to minimize, and assuming that we already have

a current point xk and direction pk in which to search, how do we choose our step

size αk? If our step size is too small, we will not make good progress toward the

minimizer, and convergence will be slow. If the step size is too large, however, we

may overshoot and produce points that are far away from the solution. A common

approach to pick an appropriate step size involves the Wolfe conditions:

f(xk + αkpk) ≤ f(xk) + c1αk∇fTk pk, (0 < c1 < 1),

∇f(xk + αkpk)T pk ≥ c2∇fTk pk, (c1 < c2 < 1).

Here, we use the shorthand notation ∇fk to mean the gradient of f evaluated

at the point xk. The search direction pk is often required to satisfy pTk∇fk < 0,

in which case it is called a descent direction, since the function is guaranteed to

decrease in this direction. Generally speaking, choosing a step size αk satisfying

these conditions ensures that we achieve sufficient decrease in the function and also

that we do not terminate the search at a point of steep decrease (since then we

could achieve even better results by choosing a slightly larger step size). The first

condition is known as the Armijo condition.

Finding such a step size satisfying these conditions is not always an easy task,

however. One simple approach, known as backtracking, starts with an initial step

size α, and repeatedly scales it down until the Armijo condition is satisfied. That

is, choose α > 0, ρ ∈ (0, 1), c ∈ (0, 1), and while

f(xk + αpk) > f(xk) + cα∇fTk pk,

re-scale α := ρα. Once the loop terminates, set αk = α. Note that the value ∇fTk pk
remains fixed for the duration of the backtracking algorithm, and hence need only

be calculated once at the beginning.

Problem 2. Implement this backtracking algorithm using the following func-

tion declaration.

def backtracking(f, slope, x, p, a=1, rho=.9, c=10e-4):

'''
Perform a backtracking line search to satisfy the Armijo condition.

Parameters

f : callable function object

The objective function

slope : float

The value of grad(f)^T p

x : ndarray of shape (n,)

The current iterate

p : ndarray of shape (n,)

5

The current search direction

a : float

The intial step length (set to 1 in Newton and quasi-Newton ←↩
methods)

rho : float

A number in (0,1)

c : float

A number in (0,1)

Returns

alpha : float

The computed step size satisfying the Armijo condition.

'''
pass

Choosing a Search Direction

There are many different ways to choose a search direction pk. As noted earlier, it is

usually a requirement to choose a descent direction. We will compare two methods,

both using derivative information about the function.

Gradient Descent. Recall that the gradient of a function at a given point gives

the direction in which the function is increasing fastest. Thus, the negative of the

gradient points in the direction of fastest decrease. In the method of Gradient

Descent, we choose our search direction to be this direction of steepest descent,

that is,

pk = −∇fk.

This is a very natural choice, since we seem to be approaching the minimum value

as fast as possible. However, depending on the nature of the objective function,

convergence may be slow. See Figure 1.2.

Newton’s Method. We now generalize the one-dimensional Newton’s method

presented above. We use both the gradient and the Hessian matrix (which gives

information on the curvature of the function at a given point) to choose a search

direction. This is more computationally intensive, but it leads to very fast conver-

gence in many cases. See Figure 1.2. Our search direction is

pk = −∇2f−1k ∇fk,

where ∇2f−1k is the inverse of the Hessian matrix of f at the point xk. In other

words, pk is the solution to the linear system

∇2fkpk = −∇fk.

Problem 3. Implement the Gradient Descent algorithm and Newton’s Method

using the following function declarations. In each function, you should call

your backtracking function with values α = 1, ρ = .9, and c = 10−4. The

6 Lab 1. Line Search Algorithms

Figure 1.2: Paths generated by Gradient Descent (green) and Newton’s Method

(blue). Note that the Newton path takes a more direct route toward the minimizer

(located at the origin).

scipy.linalg module may be useful when computing the search direction in

Newton’s Method.

def gradientDescent(f, df, x, niter=10):

'''
Minimize a function using gradient descent.

Parameters

f : callable function object

A differentiable real-valued function

df : callable function object

The gradient of the function

x : ndarray of shape (n,)

The initial point

niter : integer

The number of iterations to run.

Returns

pts: list of ndarrays

The sequence of points generated

'''
pass

7

def newtonsMethod(f, df, ddf, x, niter=10):

'''
Minimize a function using Newton's method.

Parameters

f : callable function object

Real-valued, twice-differentiable function

df : callable function object

The gradient of the function

ddf : callable function object

The Hessian of the function

x : ndarray of shape (n,)

The initial point

niter : integer

The number of iterations

Returns

pts : list of ndarrays

The sequence of points generated

'''
pass

Line Search in SciPy

The SciPy module scipy.optimize contains implementations of various optimization

algorithms, including several line search methods. In particular, the module pro-

vides a useful routine for calculating a step size satisfying the Wolfe Conditions

described above, which is more robust and efficient than our simple backtracking

approach. We recommend its use for the remainder of this lab. The function is

called line_search, and accepts several arguments. We can typically leave the key-

word arguments at their default values, but we do need to pass in the objective

function, its gradient, the current point, and the search direction. The following

code gives an example of its usage, using the objective function f(x, y) = x2 + 4y2.

>>> import numpy as np

>>> from scipy.optimize import line_search

>>>

>>> def objective(x):

>>> return x[0]**2 + 4*x[1]**2

>>>

>>> def grad(x):

>>> return 2*x*np.array([1, 4])

>>>

>>> x = np.array([1., 3.]) #current point

>>> p = -grad(x) #current search direction

>>> a = line_search(objective, grad, x, p)[0]

>>> print a

0.125649913345

8 Lab 1. Line Search Algorithms

Note that the function returns a tuple of values, the first of which is the step size.

We have illustrated the very basic use of this function. See the documentation for

further uses.

Non-linear Least Squares Problems

We now discuss a very important class of problems known as Least Squares prob-

lems. These are unconstrained optimization problems that seek to minimize an

objective function of the form

f(x) =
1

2

m∑
j=1

r2j (x),

where each ri : Rn → R is smooth, and m ≥ n. Such problems arise in many

scientific fields, including economics, physics, and statistics. Linear Least Squares

problems form an important subclass, and can be solved directly without the need

for an iterative method. At present we will focus on the non-linear case, which can

be solved with a line search method.

To motivate the problem further, suppose you are given a set of data points, and

you have some kind of model for the data. You need to choose particular values for

the parameters in your model, and you wish to do so in a way that “best fits” the

observed data. What do we mean by “best fit”? We need some way to measure the

error between our model and the data set, and then minimize this error. The best

fit will correspond to the choice of parameters that minimize the error function.

More formally, suppose we are given the data points (t1, y1), (t2, y2), . . . , (tm, ym),

where yi ∈ R and ti ∈ Rn for i = 1, . . . ,m. Let φ(x, t) be our model for this data

set, where x is a vector of parameters of the model, and t ∈ Rn. We can measure

the error at the i-th data point by the value

ri(x) := φ(x, ti)− yi,

and by summing the squares of these errors, we obtain our non-linear least squares

objective function:

f(x) =
1

2

m∑
j=1

r2j (x).

The individual functions ri that measure the error between the model and the

data point are known as residuals, and we can aggregate these functions into a

residual vector

r(x) := (r1(x), r2(x), . . . , rm(x))T .

The Jacobian of r(x) can be expressed in terms of the gradients of each ri as follows:

J(x) =


∇r1(x)T

∇r2(x)T

...

∇rm(x)T



9

You can further verify that

∇f(x) = J(x)T r(x),

∇2f(x) = J(x)TJ(x) +

m∑
j=1

rj(x)∇2rj(x).

That second term in the formula for ∇2f involves second derivatives and can be

problematic to compute. Often in practice, this term is small, either because the

residuals themselves are small, or are nearly affine in a neighborhood of the solution

and hence the second derivatives are small. The simplest method for solving the

nonlinear least squares problem, known as the Gauss-Newton Method, exploits this

observation, simply ignoring the second term and making the approximation

∇2f(x) ≈ J(x)TJ(x).

The method then proceeds in a manner similar to Newton’s Method. In particular,

at the k-th iteration, we choose a search direction pk that solves the linear system

JT
k Jkpk = −JT

k rk.

For convenience, we summarize these steps in Algorithm 1.1.

Algorithm 1.1 Gauss-Newton Method

1: procedure Gauss-Newton

2: Choose initial parameter vector x0
3: k ← 0

4: while JT
k rk 6= 0 do

5: solve JT
k Jkpk = −JT

k rk
6: choose step size αk satisfying Wolfe Conditions.

7: xk+1 ← xk + αkpk
8: k ← k + 1

Problem 4. Implement the Gauss-Newton method using the following func-

tion declaration.

def gaussNewton(f, df, jac, r, x, niter=10):

'''
Solve a nonlinear least squares problem with Gauss-Newton method.

Parameters

f : callable function object

The objective function

df : callable function object

The gradient of f

jac : callable function object

The jacobian of residual vector

r : callable function object

The residual vector

x : ndarray of shape (n,)

The initial point

10 Lab 1. Line Search Algorithms

niter : integer

The number of iterations

Returns

min : ndarray of shape (n,)

The minimizer

'''
pass

Feel free to use SciPy functions to solve linear systems and calculate step

sizes in your algorithm.

Let us work through an example of a nonlinear least squares problem. Sup-

pose we have data points generated from a sine function and slightly perturbed by

gaussian noise. In Python we can generate such data as follows:

>>> t = np.arange(10)

>>> y = 3*np.sin(0.5*t)+ 0.5*np.random.randn(10)

Now we write Python functions for our model, the residual vector, the Jacobian, the

objective function, and the gradient. The calculations for all of these are straight

forward.

>>> def model(x, t):

>>> return x[0]*np.sin(x[1]*t)

>>> def residual(x):

>>> return model(x, t) - y

>>> def jac(x):

>>> ans = np.empty((10,2))

>>> ans[:,0] = np.sin(x[1]*t)

>>> ans[:,1] = x[0]*t*np.cos(x[1]*t)

>>> return ans

>>> def objective(x):

>>> return .5*(residual(x)**2).sum()

>>> def grad(x):

>>> return jac(x).T.dot(residual(x))

By inspecting our data, we might make an initial guess for the parameters x0 =

(2.5, 0.6). We are now ready to use our gaussNewton function to find the least squares

solution.

>>> x0 = np.array([2.5,.6])

>>> x = gaussNewton(objective, grad, jac, residual, x0, niter=10)

We can plot everything together to compare our fitted model with the data and the

original sine curve from which the data were generated.

dom = np.linspace(0,10,100)

plt.plot(t, y, '*')
plt.plot(dom, 3*np.sin(.5*dom), '--')
plt.plot(dom, x[0]*np.sin(x[1]*dom))

plt.show()

11

Figure 1.3: Perturbed data (stars) generated from a sine curve (dashed line), to-

gether with the fitted sine curve (solid line).

The results are shown in Figure 1.3. As you can see, after just 10 iterations, we

have found a very good fit.

Non-linear Least Squares in Python

The module scipy.optimize also has a method to solve non-linear least squares prob-

lem, and it is quite convenient. The function is called leastsq, and in its most basic

use, you only need to pass in the residual function and starting point as arguments.

In the example above, we simply need to execute the following code:

>>> from scipy.optimize import leastsq

>>> x2 = leastsq(residual, x0)[0]

This should give us the same answer, but much faster.

Problem 5. We have census data giving the population of the United States

every ten years since 1790. For convenience, we have entered the data in

Python below, so that you may simply copy and paste.

>>> #Start with the first 8 decades of data

>>> years1 = np.arange(8)

>>> pop1 = np.array([3.929, 5.308, 7.240, 9.638, 12.866,

12 Lab 1. Line Search Algorithms

>>> 17.069, 23.192, 31.443])

>>>

>>> #Now consider the first 16 decades

>>> years2 = np.arange(16)

>>> pop2 = np.array([3.929, 5.308, 7.240, 9.638, 12.866,

>>> 17.069, 23.192, 31.443, 38.558, 50.156,

>>> 62.948, 75.996, 91.972, 105.711, 122.775,

>>> 131.669])

Consider just the first 8 decades of population data. By plotting the data

and having an inclination that population growth tends to be exponential, it

is reasonable to hypothesize an exponential model for the population, that

is,

φ(x1, x2, x3, t) = x1 exp(x2(t+ x3)).

By inspection, find a reasonable initial guess for the parameters (x1, x2, x3)

(i.e. (150, .4, 2.5)). Write a function for this model in Python, along with the

corresponding residual vector, and fit the model using the leastsq function.

Plot the data against the fitted curve, to see how close you are.

Now consider all 16 decades of data. If you plot your curve from above

with this more complete data, you will see that the model is no longer a

good fit. Instead, the data suggest a logistic model, which also arises from a

differential equations treatment of population growth. Thus, your new model

is

φ(x1, x2, x3, t) =
x1

1 + exp(−x2(t+ x3))
.

By inspection, find a reasonable initial guess for the parameters (x1, x2, x3)

(i.e. (150, .4,−15)). Again, write Python functions for the model and the

corresponding residual vector, and fit the model. Plot the data against the

fitted curve. It should be a good fit.

	Line Search Algorithms

