
Lab 1

Compressed Sensing

Lab Objective: Learn About Techniques in Compressed Sensing.

One of the more important and fundamental problems in mathematics and sci-

ence is solving a system of linear equations

Ax = b.

Depending on the properties of the matrix A (such as its dimensions and rank),

there may be exactly one solution, infinitely many solutions, or no solution at all.

In the case where A is a square invertible matrix, there is of course one unique

solution, given by A−1b. There are various computational methods for inverting A,

and we have studied many of them previously.

When b does not lie in the range of A, there is no exact solution. We can still

hope to find approximate solutions, and techniques such as least squares and least

absolute deviations provide ways to do this.

The final case is when there are infinitely many vectors x that satisfy Ax = b.

How do we decide which vector to choose? A common approach is to choose a

vector x of minimal norm satisfying Ax = b. This can be stated as an optimization

problem:

minimize ‖x‖
subject to Ax = b.

When we use the standard Euclidean 2-norm, the problem is equivalent to the

quadratic program

minimize xTx

subject to Ax = b,

which we can solve using an iterative procedure. Alternatively, the solution is given

directly by A†b, where A† is the Moore-Penrose pseudoinverse of A.

If instead of the 2-norm we use the 1-norm, our problem can be restated as a

linear program, and solved efficiently using the Simplex Algorithm or an Interior

1

2 Lab 1. Compressed Sensing

Figure 1.1: A sparse signal and a non-sparse signal.

Point method. Of course we can use any norm whatsoever, but finding the solution

may be much more difficult.

The basic problem in the field of Compressed Sensing is to recover or reconstruct

certain types of signals from a small set of measurements. For example, we might

have measurements of the frequency spectrum of an audio signal, and we wish to

recover the original audio signal as nearly as possible. Mathematically, this problem

can be viewed as solving the under-determined system of equations Ax = b, where

b is a vector of measurements and A is called the measurement matrix. The crucial

idea that Compressed Sensing brings to the table is the concept of sparsity, which

we address now.

Sparsity and the l0 Pseudonorm

Sparsity is a property of vectors in Rn related to how compactly and concisely they

can be represented in a given basis. Stated more concretely, the sparsity of a vector

x (expressed in some given basis) refers to how many nonzero entries are in x. A

vector having at most k nonzero entries is said to be k-sparse. This concept can be

extended to time series (such as an audio signal) and to images. Figure 32.1 shows

examples of both sparse and non-sparse signals.

As a convenient way of measuring sparsity, we define the so-called l0 pseudonorm,

notated ‖ · ‖0, that simply counts the number of nonzero entries in a vector. For

3

example, if we have

x =
[
1 0 0 −4 0

]T
and

y =
[
.5 .2 −.01 3 0

]T
,

we then have

‖x‖0 = 2

and

‖y‖0 = 4.

Despite our choice of notation, ‖ · ‖0 is not truly a norm (which properties does it

fail to satisfy?). Keep this in mind, even if we refer to it as the l0 norm.

As mentioned earlier, sparsity is of central importance in Compressed Sensing,

for it provides a way for us to select from the infinite possibilities a single vector x

satisfying Ax = b. In particular, we require x to be as sparse as possible, i.e. to

have minimal l0 norm. Stated explicitly as an optimization problem, Compressed

Sensing boils down

minimize ‖x‖0
subject to Ax = b.

Sparse Reconstruction

How does the Compressed Sensing framework laid out above help us recover a signal

from a set of measurements? If we know nothing about the signal that we are trying

to reconstruct, anything but a complete set of measurements (or samples) of the

signal will be insufficient to fully recover the signal without any error.

However, we can often make certain assumptions about the unknown signal,

such as setting an upper bound for its highest frequency. Given this prior knowl-

edge about the frequency of the signal, we are able to perfectly or nearly perfectly

reconstruct the signal from an incomplete set of measurements, provided that the

sampling rate of the measurements is more than twice that of the largest frequency.

This classic result in signal processing theory is known as the Nyquist-Shannon

sampling theorem.

What if, instead of having prior knowledge about the frequency of the signal, we

have prior knowledge about its sparsity? Recent research asserts that it is possible

to recover sparse signals to great accuracy from just a few measurements. This

matches intuition: sparse signals do not contain much information, and so it ought

to be possible to recover that information from just a few samples. Stated more

precisely, if x̂ ∈ Rn is sufficiently sparse and an m × n matrix A (m < n) satisfies

certain properties (to be described later), with Ax̂ = b, then the solution of the

optimization problem

minimize ‖x‖0
subject to Ax = b

yields x̂.

4 Lab 1. Compressed Sensing

Figure 1.2: A sparse image (left) and its Fourier transform (right). The Fourier

domain is incoherent with the standard domain, so the Fourier transform of the

spare image is quite diffuse.

The matrix A above must satisfy a technical condition called the Restricted

Isometry Principle. Most random matrices obtained from standard distributions

(such as the Gaussian or Bernoulli distributions) satisfy this condition, as do trans-

formation matrices into the Fourier and Wavelet domains. Generally speaking, the

measurement matrix A represents a change of basis from the sparse basis to the

measurement basis, followed by an under-sampling of the signal. The Restricted

Isometry Principle guarantees that the measurement basis is incoherent with the

sparse basis; that is, a sparse signal in the sparse basis is diffuse in the measurement

basis, and vice versa (see Figure 1.2). This ensures that the information contained

in the few nonzero coefficients in the sparse domain is spread out randomly and

roughly evenly among the coefficients in the measurement domain. We can then

obtain a small random subset of these measurement coefficients, solve the above

optimization problem, and recover the original signal.

Fortunately, many types of signals that we wish to measure are sparse in some

domain. For example, many images are sparse in the Wavelet domain. It turns

out that the Fourier domain is incoherent with the Wavelet domain, so if we take

measurements of the image in the Fourier domain, we are able to recover the image

with high fidelity from relatively few measurements. This has been particularly

useful in magnetic resonance imaging (MRI), a medical process that obtains pictures

of tissues and organs in the body by taking measurements in the Fourier domain.

5

Collecting these measurements can in some cases be harmful. Compressed sensing

allows for fewer measurements and therefore a shorter, safer MRI experience.

Solving the l0 Minimization Problem

Now that we have become familiar with the mathematical underpinnings of com-

pressed sensing, let us now turn to actually solving the problem. Unfortunately,

the l0 minimization problem stated above is NP hard and thus computationally

intractable in its current form. Another key result in compressed sensing states

that we can replace the l0 norm with the l1 norm and with high probability still

recover the original signal, provided it is sufficiently sparse. Since the l1 minimiza-

tion problem can be solved efficiently, we have a viable computational approach to

compressed sensing.

Recall that we can convert the l1 minimization problem into a linear program

by introducing an additional vector u of length n, and then solving

minimize
[
1 0

] [u
x

]
subject to

[
−I I

−I −I

] [
u

x

]
≤

[
0

0

]
,

[
0 A

] [u
x

]
= b.

Of course, solving this gives values for the optimal u and the optimal x, but we only

care about the optimal x.

Problem 1. Write a function called l1Min() that takes a matrix A and vector

b as inputs, and returns the solution to the optimization problem

minimize ‖x‖1
subject to Ax = b.

Formulate the problem as the above linear program and use CVXOPT to

obtain the solution.

Hint: CVXOPT requires the entries of the matrices to be floats.

We will use our l1 minimizer to reconstruct a sparse image using compressed

sensing. Load the image contained in the file ACME.png into Python as follows:

>>> import numpy as np

>>> from matplotlib import pyplot as plt

>>> acme = 1 - plt.imread('ACME.png')[:,:,0]
>>> print(acme.shape)

(32L, 32L)

The image contains 322 pixels, so viewed as a flat vector, it has 322 entries. Now we

build a random sampling matrix to get m measurements, take those measurements,

and reconstruct the image.

6 Lab 1. Compressed Sensing

Figure 1.3: A sparse image (left), perfect reconstruction using l1 minimization

(middle), and imperfect reconstruction using l2 minimization (right).

>>> m = 100 # The number of measurements.

>>> np.random.seed(1337) # Seed the random generator for consistency.

>>> A = np.random.randint(low=0, high=2, size=(m, 32**2))

>>> b = A.dot(acme.flatten())

>>> reconstruction = l1Min(A,b)

Problem 2. Following the example above, reconstruct the image using 100,

200, 250, and 275 measurements. Seed NumPy’s random number genera-

tor with np.random.seed(1337) before each measurement to obtain consistent

results.

Resize and plot each reconstruction in a single figure with several sub-

plots (use plt.imshow() instead of plt.plot()). Return a list containing the

Euclidean distance between each reconstruction and the original image.

Figure 1.3 shows the results of reconstructing a similar sparse image using both

the 1-norm and the 2-norm.

7

(a) (b)

Figure 1.4: A 3-D model of the earth, with 5120 faces. (a) shows two views of the

model drawn directly from satellite imagery. (b) shows two views of the reconstruc-

tion based upon 2500 single-pixel measurements.

Tesselated Surfaces and the Single Pixel Camera

We now generalize our discussion to reconstructing functions defined on surfaces.

Such a function might give a color at each point on the surface, or the temperature,

or some other property. The surface may be a sphere (to model the surface of the

earth), a cube, or some other desired form. To make the problem tractable, we must

break the surface up into a set of discrete polygonal faces, called a tessellation. See

Figure 1.4 for an example of a tessellated sphere.

Now that we have a tessellation, our function can be represented by a vector,

consisting of the function value for each facet (element of the tessellation). We

are thus in a position to apply the techniques of compressed sensing to recover the

function.

How do we go about acquiring color measurements on a tessellated surface? One

cheap method is to use a single-pixel camera. Such a camera can only measure a

single color value at a time. The camera points to a specific spot on the surface, and

records a weighted average of the colors near that spot. By taking measurements at

random spots across the surface, the single-pixel camera provides us with a vector of

measurements, which we can then use to reconstruct the color value for each facet

of the tessellation. See Figure 1.4 for the results of a single-pixel camera taking

measurements of the earth.

The single-pixel camera measurement process can be modeled as matrix multipli-

cation by a measurement matrix A, which fortunately has the Restricted Isometry

8 Lab 1. Compressed Sensing

Property. In the file camera.py, we provide you with code to take single pixel

measurements.

>>> from camera import Camera

>>> myCamera = Camera(faces, vertices, colors)

Where faces, verticies and colors are given by the tesselation.

To gather data with m measurements (taking m single-pixel pictures), do the

following:

>>> m = 450

>>> myCamera.add_lots_pics(m)

>>> A, b = myCamera.returnData()

The matrix A is the sparse measurement matrix, and b contains the data to do

compressed sensing on.

In this applications signals are only sparse in some appropriate representation

(such as Fourier or wavelet). This method generally can still be applied in such

cases. Let V represent the transformation under which s is sparse, or in other

words:

s = V p

In this case, V is the inverse Fourier. We can then recast As = b as

AV p = b (1.1)

This then allows us to find p using Compressed Sensing, which in turn allows us to

reconstruct s by using V .

You must reconstruct the color functions for the tesselated surfaces, and then

plot these surfaces using the code we provide you.

Problem 3. We will reconstruct the surface of the earth from sparse satellite

imagery. The earth is modeled by a sphere, which can be tessellated into

triangular faces, each having a single color value. The colors are sparse in

each channel in the appropriate basis.

The file StudentEarthData.npz contains the faces, vertices, and colors,

and the inverse fourier matrix, accessed by the keys 'faces', 'vertices', 'C',

and 'V', respectively. Use the faces, vertices, and colors to initialize a camera

object as in the example code above. Extract the data with the returnData()

function. The resulting matrix A is the sparse measurement matrix, and b

is an approximation of the array of colors. There are three channels in the

color array, stored as columns. Do compressed sensing on each channel of

colors, obtaining three arrays. Then stack these arrays column-wise so the

result matches the dimensions of the original array. Remember to transform

the measurement matrix first by multiplying on the right by V , then un-

transform the results by multiplying on the left by V .

The file visualize2.py contains code to visualize your results.

>>> from visualize2 import visualizeEarth

>>> results = # Do the compressed sensing and store the results.

9

>>> visualizeEarth(faces, vertices, results.clip(0,1))

We could have reconstructed a more detailed earth by choosing a finer

tessellation, but you should be able to make out the shapes of the major

continents. Compare your results to the original:

>>> visualizeEarth(faces, vertices, colors)

Do the reconstruction with 250, 400, and 550 measurements. Return a

list containing the Euclidean distance between each reconstruction and the

array of actual colors.

	Compressed Sensing

