
Lab 1

Conjugate-Gradient

Lab Objective: Learn about the Conjugate-Gradient Algorithm and its Uses

Descent Algorithms and the Conjugate-Gradient Method

There are many possibilities for solving a linear system of equations, each method

with its own set of pros and cons. In this lab, we will explore the Conjugate-

Gradient algorithm, which is a method for solving large systems of equations where

other methods, such as Cholesky factorization and simple Gaussian elimination,

are unsuitable. This algorithm, however, works equally well for optimizing con-

vex quadratic functions, and it can even be extended to more general classes of

optimization problems.

The type of linear system that Conjugate-Gradient can solve involves a matrix

with special structure. Given a symmetric positive-definite n× n matrix Q and an

n-vector b, we wish to find the n-vector x satisfying

Qx = b.

A unique solution exists because positive-definiteness implies invertibility. For our

purposes here, it is useful to recast this problem as an equivalent optimization

problem:

min
x
f(x) :=

1

2
xTQx− bTx+ c.

Note that ∇f(x) = Qx− b, so that minimizing f(x) is the same as solving

0 = ∇f(x) = Qx− b,

which is our original linear system.

So how do we go about minimizing the quadratic objective function f? Line

Search methods belonging to the class called descent algorithms use the following

strategy: start with an initial guess x0, identify a direction from this particular

point along which the objective function decreases (called a descent direction), and

1



2 Lab 1. Conjugate-Gradient

Figure 1.1: Paths traced by Steepest Descent (blue) and Conjugate-Gradient

(green). Notice the zig-zagging nature of the Steepest Descent path, as opposed

to the direct Conjugate-Gradient path, which finds the minimizer in 2 steps.

perform a line search to find a new point x1 satisfying f(x1) < f(x0). Continue it-

eratively to produce a sequence of points {x0, x1, x2, . . .} that (hopefully) converges

to the true minimizer.

One obvious candidate for the descent direction from some point xi is simply

−∇f(xi), since this vector points in the direction of steepest decrease. This proce-

dure is known as the Method of Steepest Descent. Steepest descent, however, can

be very inefficient for certain problems: depending on the geometry of the objective

function, the sequence of points can “zig-zag” back and forth without making ap-

preciable progress toward the true minimizer. In contrast, the Conjugate-Gradient

algorithm ensures that the true global minimizer is reached in at most n steps. See

Figure 1.1 for an illustration of this contrast. To understand why this is the case

and how the algorithm chooses each descent direction, we next discuss the idea of

vector conjugacy.

Conjugacy

Consider again our symmetric positive definite n× n matrix Q. Two vectors x, y ∈
Rn are said to be conjugate with respect to Q if xTQy = 0. A set of vectors

{x0, x1, . . . , xm} is said to be conjugate if each pair of vectors are conjugate to each

other. Note that if Q = I, then conjugacy is the same as orthogonality. Thus, the



3

notion of conjugacy is in some ways a generalization of orthogonality. It turns out

that a conjugate set of vectors is linearly independent, and a conjugate basis–which

can be constructed in a manner analogous to the Gram-Schmidt orthogonalization

process–can be used to diagonalize the matrix Q. These are some of the theoretical

reasons behind the effectiveness of the Conjugate-Gradient algorithm.

The Algorithm

If we are given a set of n Q-conjugate vectors, we can simply choose these as

our direction vectors and follow the basic descent algorithm. Convergence to the

minimizer in at most n steps is guaranteed because each iteration in the algorithm

minimizes the objective function over an expanding affine subspace of dimension

equal to the iteration number. Thus, at the n-th iteration, we have minimized the

function over all of Rn.

Unfortunately, we are not often given a set of conjugate vectors in advance, so

how do we produce such a set? As mentioned earlier, a Gram-Schmidt process

could be used, and the set of eigenvectors also works, but both of these options are

computationally expensive. Built into the algorithm is a way to determine a new

conjugate direction based only on the previous direction, which means less memory

usage and faster computation. We have stated the details of Conjugate-Gradient in

Algorithm 1.1.

Algorithm 1.1 Conjugate-Gradient Algorithm

1: procedure Conjugate-Gradient Algorithm

2: Choose initial point x0.

3: r0 ← Qx0 − b, d0 ← −r0, k ← 0.

4: while rk 6= 0 do

5: αk ← rTk rk
dTkQdk

.

6: xk+1 ← xk + αkdk.

7: rk+1 ← rk + αkQdk.

8: βk+1 ←
rTk+1rk+1

rTk rk
.

9: dk+1 ← −rk+1 + βk+1dk.

10: k ← k + 1.

Note that the points xi are the successive approximations to the minimizer, the

vectors di are the conjugate descent directions, and the vectors ri, which actually

correspond to the steepest descent directions, are used in determining the conjugate

directions. The constants αi and βi are used, respectively, in the line search, and

in ensuring the Q-conjugacy of the descent directions.

The most numerically expensive computation in the algorithm is matrix-vector

multiplication. Notice, however, that each iteration of the algorithm only requires

one distinct matrix-vector multiplication, Qdk. The rest of the operations are simply

vector-vector multiplication, addition, and scalar multiplication. This makes for a

very fast algorithm. As noted earlier, Conjugate-Gradient is especially preferred

when Q is large and sparse. In this case, it may be possible to design a specialized

sub-routine that performs matrix-vector multiplication by Q, by taking advantage

of its sparseness. Doing so may lead to further speed-ups in the overall algorithm.



4 Lab 1. Conjugate-Gradient

We now have an algorithm that can solve certain n×n linear systems and mini-

mize quadratic functions on Rn in at most n steps, and sometimes fewer, depending

on the spectrum of the matrix Q. Further improvements on convergence may be

obtained by preconditioning the matrix, but we do not go into detail here.

Problem 1. Implement the basic Conjugate-Gradient algorithm presented

above. Write a function conjugateGradient() that accepts a vector b, an initial

guess x0, a symmetric positive-definite matrix Q, and a default tolerance of

.0001 as inputs. Continue the algorithm until ‖rk‖ is less than the tolerance.

Return the solution x∗ to the linear system Qx = b.

Example

We now work through an example that demonstrates the usage of the Conjugate-

Gradient algorithm. We assume that we have already written the specified function

in the above problem.

We must first generate a symmetric positive-definite matrix Q. This can be

done by generating a random matrix A and setting Q = ATA. So long as A is of

full column rank, the matrix Q will be symmetric positive-definite.

>>> import numpy as np

>>> from scipy import linalg as la

>>> # initialize the desired dimension of the space

>>> n = 10

>>> # generate Q, b

>>> A = np.random.random((n,n))

>>> Q = A.T.dot(A)

>>> b = np.random.random(n)

At this point, check to make sure that Q is nonsingular by examining its determinant

(use scipy.linalg.det()). Provided that the determinant is nonzero, we proceed by

writing a function that performs matrix-vector multiplication by Q (we will not take

advantage of sparseness just now), randomly selecting a starting point (Conjugate-

Gradient is not sensitive to the location of the starting point), obtaining the answer

using our function, and checking it with the answer obtained by scipy.linalg.solve().

>>> # generate random starting point

>>> x0 = np.random.random(n)

>>> # find the solution

>>> x = conjugateGradient(b, x0, mult)

>>> # compare to the answer obtained by SciPy

>>> print np.allclose(x, la.solve(Q,b))

The output of the print statement should be True.

Time the performance of your algorithm and of scipy.linalg.solve() on inputs

of size 100.



5

Application: Least Squares and Linear Regression

The Conjugate-Gradient method can be used to solve linear least squares problems,

which are ubiquitous in applied science. Recall that a least squares problem can be

formulated as an optimization problem:

min
x
‖Ax− b‖2,

where A is an m × n matrix with full column rank, x ∈ Rn, and b ∈ Rm. The

solution can be calculated analytically, and is given by

x∗ = (ATA)−1AT b,

or in other words, the minimizer solves the linear system

ATAx = AT b.

Since A has full column rank, we know that ATA is an n × n matrix of rank n,

which means it is invertible. We can therefore conclude that ATA is symmetric

positive-definite, so we may use Conjugate-Gradient to solve the linear system and

obtain the least squares solution.

Linear least squares is the mathematical underpinning of linear regression, which

is a very common technique in many scientific fields. In a typical linear regression

problem, we have a set of real-valued data points {y1, . . . , ym}, where each yi is

paired with a corresponding set of predictor variables {xi,1, xi,2, . . . , xi,n} with n <

m. The linear regression model posits that

yi = β0 + β1xi,1 + β2xi,2 + · · ·+ βnxi,n + εi

for i = 1, 2, . . . ,m. The real numbers β0, . . . , βn are known as the parameters of

the model, and the εi are independent normally-distributed error terms. Our task

is to calculate the parameters that best fit the data. This can be accomplished by

posing the problem in terms of linear least squares: Define

b = [y1, . . . , ym]T ,

A =


1 x1,1 x1,2 · · · x1,n
1 x2,1 x2,2 · · · x2,n
...

...
...

. . .
...

1 xm,1 xm,2 · · · xm,n

 ,
and

x = [β0, β1, . . . , βn]T .

Now use Conjugate-Gradient to solve the system

ATAx = AT b.

The solution x∗ = [β∗
0 , β

∗
1 , . . . , β

∗
n]T gives the parameters that best fit the data.

These values can be understood as defining the hyperplane that best fits the data.

See Figure 1.2.



6 Lab 1. Conjugate-Gradient

Figure 1.2: Solving the Linear Regression problem results in a best-fit hyperplane.

Problem 2. Using your Conjugate-Gradient function, solve the linear re-

gression problem specified by the data contained in the file linregression.txt.

This is a whitespace-delimited text file formatted so that the i-th row con-

sists of yi, xi,1, . . . , xi,n. Use the function numpy.loadtxt() to load in the data.

Report your solution.

Non-linear Conjugate-Gradient Algorithms

The algorithm presented above is only valid for certain linear systems and quadratic

functions, but the basic strategy may be adapted to minimize more general convex

or non-linear functions. There are multiple ways to modify the algorithm, and they

all involve getting rid of Q, since there is no such Q for non-quadratic functions.

Generally speaking, we need to find new formulas for αk, rk, and βk.

The scalar αk is simply the result of performing a line-search in the given direc-

tion dk, so we may define

αk = arg min
x

f(xk + αdk).

The vector rk in the original algorithm was really just the gradient of the objective



7

function, and so we may define

rk = ∇f(xk).

There are various ways to define the constants βk in this more general setting, and

the right choice will depend on the nature of the objective function. A well-known

formula, due to Fletcher and Reeves, is

βk+1 =
∇fTk+1∇fk+1

∇fTk ∇fk
.

Making these adjustments is not difficult, but we will opt instead to use built-

in functions in Python. In particular, the SciPy module scipy.optimize provides a

function fmin_cg(), which uses a non-linear Conjugate-Gradient method to minimize

general functions. Using this function is easy – we only need to pass to it the

objective function and an initial guess.

Application: Logistic Regression

Logistic regression is an important technique in statistical analysis and classification.

The core problem in logistic regression involves an optimization that we can tackle

using nonlinear Conjugate-Gradient.

As in linear regression, we have a set of data points yi together with predictor

variables xi,1, xi,2, . . . , xi,n for i = 1, . . . ,m. However, the yi are binary data points

– that is, they are either 0 or 1. Furthermore, instead of having a linear relation-

ship between the data points and the response variables, we assume the following

probabilistic relationship:

P(yi = 1 |xi,1, . . . , xi,n) = pi,

where

pi =
1

1 + exp(−(β0 + β1xi,1 + · · ·+ βnxi,n))
.

The parameters of the model are the real numbers β0, β1, . . . , βn. Observe that we

have pi ∈ (0, 1) regardless of the values of the predictor variables and parameters.

The probability of observing the data points yi under this model, assuming they

are independent, is given by the expression

m∏
i=1

pyii (1− pi)1−yi .

We seek to choose the parameters β0, . . . , βn that maximize this probability. To

this end, define the likelihood function L : Rn+1 → R by

L(β0, . . . , βn) =

m∏
i=1

pyii (1− pi)1−yi .

We can now state our core problem as follows:

max
(β0,...,βn)

L(β0, . . . , βn).



8 Lab 1. Conjugate-Gradient

Table 1.1: Data for Logistic Regression Example

y x

0 1

0 2

0 3

0 4

1 5

0 6

1 7

0 8

1 9

1 10

Maximizing this function can be problematic for numerical reasons. By taking

the logarithm of the likelihood, we have a more suitable objective function whose

maximizer agrees with that of the original likelihood function, since the logarithm is

strictly monotone increasing. Thus, we define the log-likelihood function l : Rn+1 →
R by l = log ◦L.

Finally, we multiply by −1 to turn our problem into minimization. The final

statement of the problem is:

min
(β0,...,βn)

−l(β0, . . . , βn).

A few lines of calculation reveal that

l(β0, . . . , βn) =−
m∑
i=1

log(1 + exp(−(β0 + β1xi,1 + · · ·+ βnxi,n)))+

m∑
i=1

yi(β0 + β1xi,1 + · · ·+ βnxi,n).

The values for the parameters that we obtain are known collectively as the maximum

likelihood estimate.

Let’s work through a simple example. We will deal with just one predictor

variable, and therefore two parameters. The data is given in Table 1.1. This is

obviously just toy data with no meaning, but one can think of the yi data points as

indicating, for example, the presence of absence of a particular disease in subject i,

with xi being the subject’s weight, or age, or something of the sort.

In the code below we initialize our data.

>>> y = np.array([0, 0, 0, 0, 1, 0, 1, 0, 1, 1])

>>> x = np.ones((10, 2))

>>> x[:,1] = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

Although we have just one predictor variable, we initialized x with two columns, the

first of which consists entirely of ones, and the second of which contains the values

of the predictor variable. This extra column of ones corresponds to the parameter



9

β0, which, as you will note, is not multiplied by any of the predictor variables in

the log-likelihood function.

We next need to write a Python function that returns the value of our objective

function for any value of the parameters, (β0, β1).

>>> def objective(b):

... #Return -1*l(b[0], b[1]), where l is the log likelihood.

... return (np.log(1+np.exp(x.dot(b))) - y*(x.dot(b))).sum()

Finally, we minimize the objective function using fmin_cg().

>>> guess = np.array([1., 1.])

>>> b = fmin_cg(objective, guess)

Optimization terminated successfully.

Current function value: 4.310122

Iterations: 13

Function evaluations: 128

Gradient evaluations: 32

>>> print b

[-4.35776886 0.66220658]

We can visualize our answer by plotting the data together with the function

φ(x) =
1

1 + exp(−β0 − β1x)
,

using the values β0, β1 that we obtained from the minimization.

>>> dom = np.linspace(0, 11, 100)

>>> plt.plot(x, y, 'o')
>>> plt.plot(dom, 1./(1+np.exp(-b[0]-b[1]*dom)))

>>> plt.show()

Using this procedure, we obtain the plot in Figure 1.3. Note that the graph of

φ, known as a sigmoidal curve, gives the probability of y taking the value 1 at a

particular value of x. Observe that as x increases, this probability approaches 1.

This is reflected in the data.

Problem 3. Following along with the example given above, find the max-

imum likelihood estimate of the parameters for the logistic regression data

in the file logregression.txt. This is a whitespace-delimited text file for-

matted so that the i-th row consists of yi, xi,1, xi,2, xi,3. Since there are three

predictor variables, there are four parameters in the model. Report the cal-

culated values.

You should be able to use much of the code above unchanged. In partic-

ular, the function objective() does not need any changes. You simply need

to set your variables y and x appropriately, and choose a new initial guess

(an array of length four). Note that x should be an m× 4 array whose first

column consists entirely of ones, whose second column contains the values in

the second column of the data file, and so forth.



10 Lab 1. Conjugate-Gradient

Figure 1.3: Data from the logistic regression example together with the calculated

sigmoidal curve.

Logistic regression can become a bit more tricky when some of the predictor

variables take on binary or categorical values. In such situations, the data requires

a bit of pre-processing before running the minimization.

The values of the parameters that we obtain can be useful in analyzing relation-

ships between the predictor variables and the yi data points. They can also be used

to classify or predict values of new data points.


	Conjugate-Gradient

