
Lab 1

Trust-Region Methods

Lab Objective: Explore Trust-Region methods for optimization.

When it comes to optimizing high-dimensional functions, a common strategy is

to break the problem up into a series of smaller, easier tasks, leading to a sequence

of successive approximations to the optimizer. This is the approach taken by Line-

Search algorithms such as Newton’s method or conjugate gradient. The class of

algorithms known as trust-region methods are also based on this strategy, although

they differ from line-search methods in some important ways.

Overview of the Trust-Region Approach

Suppose we wish to minimize a function f . Given some particular point xk in the

domain of f , how do we select a new point xk+1 that better minimizes the function?

A line-search algorithm solves this sub-problem by first choosing a search direction

dk (often related to the gradient of f), and then a step length αk so as to minimize

f along the direction dk. The next point, then, is simply

xk+1 := xk + αkdk.

A trust-region algorithm, on the other hand, does away with a search direction

and step length, and instead approximates the function f with some simpler function

mk (called the model function) in a neighborhood of xk. The model mk will likely

not be a good approximation for f over the entire domain, and so we must restrict

our attention to a ball of radius rk centered at the point xk, inside of which mk is

reasonably close to f . We then minimize mk over this ball, and set xk+1 equal to

this minimizer. That is, we compute xk+1 by solving the sub-problem

xk+1 := argmin
x∈B(xk,rk)

mk(x).

The ball B(xk, rk) is called the trust region because we trust that the model function

mk gives a reasonably accurate approximation of f on this region. Note that it is

also possible to use other types of trust regions, such as ellipsoidal or box-like

regions.

1

2 Lab 1. Trust-Region Methods

The Model Function

The model function is commonly taken to be a linear or quadratic approximation

of f based on its Taylor Series expansion about the point xk. In the linear case,

our model function has the form

mk(x) = f(xk) + (x− xk)T∇f(xk).

In the quadratic case, we simply add on a quadratic term to obtain

mk(x) = f(xk) + (x− xk)T∇f(xk) +
1

2
(x− xk)THk(x− xk),

where Hk is the Hessian matrix of f at xk, or some approximation thereof. Given

a trust region with radius rk, note that our sub-problem can be written in the

following way:

xk+1 = argmin
x∈B(xk,rk)

mk(x)

= xk + pk,

where

pk = argmin
‖p‖<rk

{f(xk) + pT∇f(xk) +
1

2
pTHkp}. (1.1)

pk is called a step. Also we define p to be

p = x− xk (1.2)

For the remainder of the lab, we define

mk(p) = f(xk) + pT∇f(xk) +
1

2
pTHkp,

and refer to this function as the model function.

The Trust-Region Radius

A crucial aspect of trust-region algorithms is the choice of radius rk. If rk is too

small, then the algorithm will make slow progress toward the minimizer of f . If

rk is too large, the model function will be a poor fit for the objective function f ,

and the next iterate xk+1 may fail to decrease f . Of course, whether the radius

is too small or large depends on the local behavior of f , which may change as the

algorithm converges. A reasonably robust trust-region algorithm must therefore be

able to adaptively choose the trust-region radius.

Our strategy for choosing an appropriate radius rk+1 for the (k + 1)-th iterate

involves evaluating the accuracy of the model function at the k-th iterate. If the

model was accurate and a large step was taken, we can optimistically choose rk+1

to be larger than rk in the hopes of achieving faster convergence. To prevent the

radius from growing too large, we set an overall bound rmax on the trust-region

radii. If the model was very inaccurate, we make rk+1 smaller than rk, since the

model function can’t be trusted over such a large region. If the model was neither

particularly accurate nor inaccurate, we simply choose rk+1 = rk.

3

We measure the accuracy of the model by computing the following value:

ρk =
f(xk)− f(xk + pk)

mk(0)−mk(pk)
.

This value is the ratio of the actual reduction to the predicted reduction in the

objective function. The closer ρk is to 1, the more accurate the model. Note that

if ρk is negative or below a certain positive threshold η, then the point xk + pk is a

poor improvement over xk (and perhaps is worse). In this case, we reject the new

point and set xk+1 = xk.

The Trust-Region Algorithm

We now combine the two steps of minimizing the model function and choosing the

trust-region radius to build the algorithm. In practice, we halt the algorithm once

‖∇f(xk)‖ is less than some threshold value.

Algorithm 1.1 Trust-Region Algorithm

1: procedure Trust-Region Algorithm

2: Choose initial point x0, initial radius r0, and threshold η ∈ [0, 0.25).

3: while ‖∇f(xk)‖ > tol do

4: Calculate pk by solving the sub-problem in Equation 1.1.

5: Compute ρk.

6: if ρk < 0.25 then

7: rk+1 = 0.25rk
8: else

9: if ρk > 0.75 and ‖pk‖ = rk then

10: rk+1 = min(2rk, rmax)

11: else

12: rk+1 = rk

13: if ρk > η then

14: xk+1 = xk + pk
15: else

16: xk+1 = xk

Problem 1. Implement the trust-region algorithm (see the specifications

file). At this stage, do not solve Equation (1.1) for pk. Instead, assume the

parameter subprob is a function that does that for you (see Problem 2) The

function subprob() takes as parameters a gradient vector, hessian matrix, and

radius.

Solving the Sub-problem: the Dogleg Method

Our trust-region algorithm is as yet incomplete, since we do not have a viable means

solving the subproblem given by Equation 1.1. We may be tempted to search for

4 Lab 1. Trust-Region Methods

(a) Dogleg path completely

within the trust region.

(b) Intersection in the first

leg of the path.

(c) Intersection in the sec-

ond leg of the path.

Figure 1.1: Relationships between the dogleg path (black solid line), the trust region

boundary (red dashed circle), and the dogleg minimizer (blue dot).

the true minimizer of the model function over the trust region, but it turns out that

we can get away with just an approximate minimizer. We will employ the “dogleg”

method when selecting an approximate minimizer of the model function. This

method works by minimizing the model function along a particular path extending

from the origin out to the boundary of the trust region. This path is piecewise linear

and has a shape vaguely reminiscent of a dog’s leg, which explains the peculiar name

of the method.

To calculate the dogleg minimizer of the model function, we first solve the uncon-

strained minimizer of the model function. We pB as the unconstrained minimizer

of the model function:

pB = −H−1k ∇f(xk).

We then calculate the direction of steepest descent for the model function, given by

pU = − ∇f(xk)T∇f(xk)

∇f(xk)THk∇f(xk)
∇f(xk).

We define the dogleg path using these two points as follows:

γ(τ) =

{
τpU , 0 ≤ τ ≤ 1

pU + (τ − 1)(pB − pU), 1 ≤ τ ≤ 2

It can be shown that the model function decreases along this path. Thus, the

dogleg minimizer is either the endpoint of the path if it lies completely within the

trust region, or the point of intersection between the path and the boundary of

the trust region. See Figure 1.1 for an illustration of the three salient cases. We

consider each case in turn.

• When the path lies completely within the trust region, the dogleg minimizer

is simply the endpoint, namely pB . This is the case when ‖pB‖ ≤ rk. See

Figure 1.1a.

• When the path intersects the boundary of the trust region in the first line

segment, the dogleg minimizer is rkp
U/‖pU‖. This is the case when ‖pU‖ ≥ rk.

See Figure 1.1b.

5

• When the path intersects the boundary of the trust region in the second line

segment, the dogleg minimizer is given by pU + (τ∗ − 1)(pB − pU), where τ∗

satisfies the quadratic equation

‖pU + (τ∗ − 1)(pB − pU)‖2 = r2k.

This quadratic equation can be simplified into

a(τ∗ − 1)2 + b(τ∗ − 1) + c = 0

where the coefficients are defined to be

a = pTBpB − 2pTBpU + pTUpU

b = 2pTBpU − 2pTUpU

c = pTUpU − r2k.

See Figure 1.1c.

Problem 2. Implement the dogleg method. Remember to avoid calculating

the inverse of a matrix.

Test your implementation of the trust-region algorithm on the Rosenbrock func-

tion contained the scipy.optimize module. Compare your answer with that ob-

tained by SciPy’s trust-region implementation. The code to accomplish this, to-

gether with the correct results, is given below.

>>> from scipy import optimize as op

>>> x = np.array([10.,10])

>>> rmax=2.

>>> r=.25

>>> eta=1./16

>>> tol=1e-5

>>> opts = {'initial_trust_radius':r, 'max_trust_radius':rmax, 'eta':eta, 'gtol':←↩
tol}

>>> sol1 = op.minimize(op.rosen, x, method='dogleg', jac=op.rosen_der, hess=op.←↩
rosen_hess, options=opts)

>>> sol2 = trustRegion(op.rosen, op.rosen_der, op.rosen_hess, dogleg, x, r, rmax,←↩
eta, gtol=tol)

>>> print np.allclose(sol1.x, sol2)

True

Problem 3. Test your trustRegion() and dogleg() methods on the Rosen-

brock function. Use the rosen(), rosen_der(), and rosen_hess() methods from

scipy.optimize. Return the solution x* from the trustRegion() method.

6 Lab 1. Trust-Region Methods

Solving Systems of Nonlinear Equations

Trust-region methods can be used to find solutions of systems of nonlinear equations,

which arise in applications across science and engineering. Suppose we have a vector

function r : Rn → Rn, written as

r(x) =

r1(x)

r2(x)
...

rn(x)

 ,
where each ri is a nonlinear smooth function mapping from Rn into R. Our goal is

to find x ∈ Rn that satisfies r(x) = 0; such an x is called a solution or root of the

nonlinear system. In general, there may be several roots (even infinitely many), or

there may be none at all. Solving the equations by hand can range from arduous

to impossible, so we turn to trust-region methods for help.

In order to use our trust-region method to find the roots of a system of equations,

we need to come up with an objective function whose minima correspond to roots

of the system. As such, we consider the merit function

f(x) =
1

2
‖r(x)‖22 =

1

2

n∑
i=1

ri(x)2,

which, roughly speaking, measures how close a point x is to being a root of r. Note

that f(x) = 0 if and only if r(x) = 0. Thus, if we can successfully find a global

minimum of f , we will have found a root to the nonlinear system.

Now that we have an objective function, we need to create a quadratic model

function. If we let Jk be the Jacobian matrix of r at the point xk, i.e.

Jk =

∇r1(xk)T

∇r2(xk)T

...

∇rn(xk)T

 ,
then we can write the gradient ∇f(xk) = JT

k r(xk) and the Hessian Hk = JT
k Jk.

We can now use the same model function described earlier.

Let’s work through an example. Consider the system

r(x, y) =

[
− sinx cos y − 2 cosx sin y

− sin y cosx− 2 cos y sinx

]
.

Observe that the Jacobian takes the form

J(x) =

[
− cosx cos y + 2 sinx sin y sinx sin y − 2 cosx cos y

sin y sinx− 2 cos y cosx − cos y cosx+ 2 sin y sinx

]
.

In Python, we initialize all of the requisite functions and then find a root as follows:

>>> # define the system of equations

>>> def r(x):

7

>>> return np.array([-sin(x[0])*cos(x[1]) - 2*cos(x[0])*sin(x[1]),

>>> -sin(x[1])*cos(x[0]) - 2*cos(x[1])*sin(x[0])])

>>>

>>> # define the merit function

>>> def f(x):

>>> return .5*(r(x)**2).sum()

>>>

>>> # define the jacobian function

>>> def J(x):

>>> return np.array([[-cos(x[0])*cos(x[1]) + 2*sin(x[0])*sin(x[1]),

>>> sin(x[0])*sin(x[1]) - 2*cos(x[0])*cos(x[1])],

>>> [sin(x[1])*sin(x[0]) - 2*cos(x[1])*cos(x[0]),

>>> -cos(x[1])*cos(x[0]) + 2*sin(x[1])*sin(x[0])]])

>>>

>>> # define the gradient function

>>> def g(x):

>>> return J(x).dot(r(x))

>>>

>>> # define the Hessian function

>>> def H(x):

>>> return J(x).T.dot(J(x))

>>>

>>> # set trust-region parameters

>>> rmax=2.

>>> rr=.25

>>> eta=1./16

>>> tol=1e-5

>>> # set initial point

>>> x = np.array([3.5, -2.5])

>>> # find a minimizer of f

>>> xstar = trustRegion(f,g,H,dogleg,x,rr,rmax,eta=eta,gtol=tol)

>>> print xstar

[3.14159265 -3.14159265]

>>> # verify that it is a root of r

>>> print r(xstar)

[-7.75116117e-09 7.75147025e-09]

Of course, we are not guaranteed to always find a root, as convergence depends

on the choice of initial point. However, by running the algorithms with several

randomly selected starting points, we are more likely to be successful.

Problem 4. Solve the following nonlinear system.

r(x, y) =

[
sinx cos y − 4 cosx sin y

sin y cosx− 4 cos y sinx

]
=

[
0

0

]
.

	Trust-Region Methods

