
Lab 1

Interior Point I

Lab Objective: For decades after its invention, the Simplex algorithm was the

only competitive method for linear programming. The past 30 years, however, have

seen the discovery and widespread adoption of a new family of algorithms that rival–

and in some cases outperform–the Simplex algorithm, collectively called Interior

Point methods. One of the major shortcomings of the Simplex algorithm is that the

number of steps required to solve the problem can grow exponentially with the size of

the linear system. Thus, for certain large linear programs, the Simplex algorithm is

simply not viable. Interior Point methods offer an alternative approach and enjoy

much better theoretical convergence properties. In this lab we implement an Interior

Point method for linear programs, and in the next lab we will turn to the problem

of solving quadratic programs.

Introduction

Recall that a linear program is a constrained optimization problem with a linear

objective function and linear constraints. The linear constraints define a set of

allowable points called the feasible region, the boundary of which forms a geometric

object known as a polytope. The theory of convex optimization ensures that the

optimal point for the objective function can be found among the vertices of the

feasible polytope. The Simplex Method tests a sequence of such vertices until it finds

the optimal point. Provided the linear program is neither unbounded nor infeasible,

the algorithm is certain to produce the correct answer after a finite number of steps,

but it does not guarantee an efficient path along the polytope toward the minimizer.

Interior point methods do away with the feasible polytope and instead generate a

sequence of points that cut through the interior (or exterior) of the feasible region

and converge iteratively to the optimal point. Although it is computationally more

expensive to compute such interior points, each step results in significant progress

toward the minimizer. See Figure 1.1. In general, the Simplex Method requires

many more iterations (though each iteration is less expensive computationally).

1

2 Lab 1. Interior Point I

Figure 1.1: A path traced by an Interior Point algorithm.

Primal-Dual Interior Point Methods

Some of the most popular and successful types of Interior Point methods are known

as Primal-Dual Interior Point methods. Consider the following linear program:

minimize cTx

subject to Ax = b

x ≥ 0.

Here, x, c ∈ Rn, b ∈ Rm, and A is an m× n matrix with full row rank. This is the

primal problem, and its dual takes the form:

maximize bTλ

subject to ATλ + µ = c

µ,λ ≥ 0,

where λ ∈ Rm and µ ∈ Rn.

KKT Conditions

The theory of convex optimization gives us necessary and sufficient conditions for

the solutions to the primal and dual problems via the Karush-Kuhn-Tucker (KKT)

conditions. The Lagrangian for the primal problem is as follows:

L(x,λ,µ) = cTx + λT (b−Ax)− µTx

3

The KKT conditions are

ATλ + µ = c

Ax = b

xiµi = 0, i = 1, 2, . . . , n,

x,µ ≥ 0.

It is convenient to write these conditions in a more compact manner, by defining

an almost-linear function F and setting it equal to zero:

F (x,λ,µ) :=

ATλ + µ− c

Ax− b

Mx

 = 0,

(x,µ) ≥ 0,

where M = diag(µ1, µ2, . . . , µn). Note that the first row of F is the KKT condition

for dual feasibility, the second row of F is the KKT condition for the primal problem,

and the last row of F accounts for complementary slackness.

Problem 1. Define a function interiorPoint() that will be used to solve the

complete interior point problem. This function should accept A, b, and c as

parameters, along with the keyword arguments niter=20 and tol=1e-16. The

keyword arguments will be used in a later problem.

For this problem, within the interiorPoint() function, write a function for

the vector-valued function F described above. This function should accept

x, λ, and µ as parameters and return a 1-dimensional NumPy array with

2n+m entries.

Search Direction

A Primal-Dual Interior Point method is a line search method that starts with

an initial guess (xT
0 ,λ

T
0 ,µ

T
0) and produces a sequence of points that converge to

(x∗T ,λ∗T ,µ∗T), the solution to the KKT equations and hence the solution to the

original linear program. The constraints on the problem make finding a search di-

rection and step length a little more complicated than for the unconstrained line

search we have studied previously.

In the spirit of Newton’s Method, we can form a linear approximation of the

system F (x,λ,µ) = 0 centered around our current point (x,λ,µ), and calculate

the direction (4xT ,4λT ,4µT) in which to step to set the linear approximation

equal to 0. This equates to solving the linear system:

DF (x,λ,µ)

4x

4λ

4µ

 = −F (x,λ,µ) (1.1)

4 Lab 1. Interior Point I

Here DF (x,λ,µ) denotes the total derivative matrix of F . We can calculate

this matrix block-wise by obtaining the partial derivatives of each block entry of

F (x,λ,µ) with respect to x, λ, and µ, respectively. We thus obtain:

DF (x,λ,µ) =

 0 AT I

A 0 0

M 0 X

where X = diag(x1, x2, . . . , xn).

Unfortunately, solving Equation 1.1 often leads to a search direction that is too

greedy. Even small steps in this direction may lead the iteration out of the feasible

region by violating one of the constraints. To remedy this, we define the duality

measure ν1 of the problem:

ν =
xTµ

n

The idea is to use Newton’s method to identify a direction that stricly decreases ν.

Thus instead of solving Equation 1.1, we solve:

DF (x,λ,µ)

4x

4λ

4µ

 = −F (x,λ,µ) +

 0

0

σνe

 (1.2)

where e = (1, 1, . . . , 1)T and σ ∈ [0, 1) is called the centering parameter. The

closer σ is to 0, the more similar the resulting direction will be to the plain Newton

direction. The closer σ is to 1, the more the direction points inward to the interior

of the of the feasible region.

Problem 2. Within interiorPoint(), write a subroutine to compute the search

direction (4xT ,4λT ,4µT) by solving Equation 1.2. Use σ = 1
10 for the

centering parameter.

Note that only the last block row of DF will need to be changed at

each iteration (since M and X depend on µ and x, respectively). Consider

using the functions lu_factor() and lu_solve() from the scipy.linalg module

to solving the system of equations efficiently.

Step Length

Now that we have our search direction, it remains to choose our step length. We wish

to step nearly as far as possible without violating the problem’s constraints, thus

remaining in the interior of the feasible region. First, we calculate the maximum

allowable step lengths for x and µ, respectively:

αmax = min {1,min{−µi/4µi | 4µi < 0}}
δmax = min {1,min{−xi/4xi | 4xi < 0}}

1ν is the Greek letter for n, pronounced “nu.”

5

Next, we back off from these maximum step lengths slightly:

α = min(1, 0.95αmax)

δ = min(1, 0.95δmax).

These are our final step lenghts. Thus, the next point in the iteration is given by:

xk+1 = xk + δ4xk

(λk+1,µk+1) = (λk,µk) + α(4λk,4µk).

Problem 3. Within interiorPoint(), write a subroutine to compute the step

size after the search direction has been computed. Avoid using loops when

computing αmax and βmax (use masking and NumPy functions instead).

Initial Point

Finally, the choice of initial point (x0,λ0,µ0) is an important, nontrivial one. A

näıvely or randomly chosen initial point may cause the algorithm to fail to converge.

The following function will calculate an appropriate initial point.

def startingPoint(A, b, c):

"""Calculate an initial guess to the solution of the linear program

min c^T x, Ax = b, x>=0.

Reference: Nocedal and Wright, p. 410.

"""

Calculate x, lam, mu of minimal norm satisfying both

the primal and dual constraints.

B = la.inv(A.dot(A.T))

x = A.T.dot(B.dot(b))

lam = B.dot(A.dot(c))

mu = c - A.T.dot(lam)

Perturb x and s so they are nonnegative.

dx = max((-3./2)*x.min(), 0)

dmu = max((-3./2)*mu.min(), 0)

x += dx*np.ones_like(x)

mu += dmu*np.ones_like(mu)

Perturb x and mu so they are not too small and not too dissimilar.

dx = .5*(x*mu).sum()/mu.sum()

dmu = .5*(x*mu).sum()/x.sum()

x += dx*np.ones_like(x)

mu += dmu*np.ones_like(mu)

return x, lam, mu

6 Lab 1. Interior Point I

Problem 4. Complete the implementation of interiorPoint().

The duality measure ν tells us in some sense how close our current point

is to the minimizer. The closer ν is to 0, the closer we are to the optimal

point. Thus, by printing the value of ν at each iteration, you can track how

your algorithm is progressing and detect when you have converged.

Use the function provided above to select an initial point, then run the

iteration niter times, or until the duality measure is less than tol. Return

the optimal point x∗ and the optimal value cTx∗.

To test your implementation, use the following code to generate a random

linear program, along with the optimal solution.

def randomLP(m):

"""Generate a 'square' linear program min c^T x s.t. Ax = b, x>=0.

First generate m feasible constraints, then add slack variables.

Inputs:

m -- positive integer, number of desired constraints and

the dimension of space in which to optimize.

Outputs:

A -- array of shape (m,n).

b -- array of shape (m,).

c -- array of shape (n,).

x -- the solution to the LP.

"""

n = m

A = np.random.random((m,n))*20 - 10

A[A[:,-1]<0] *= -1

x = np.random.random(n)*10

b = A.dot(x)

c = A.sum(axis=0)/float(n)

return A, b, -c, x

>>> A, b, c, x = randomLP(5)

>>> point, value = interiorPoint(A, b, c)

>>> np.allclose(x, value)

True

Note

Our implementation of the interior point method is pretty good, but for linear

programs where the number of constraints m is strictly greater than the num-

ber of decision variables n, it fails to get quite the right answer about 11% of

the time. If you can discover why this is, fix it, and write up your results in a

clear and intelligle way (aka IPython Notebook), then you will earn massive

extra credit on this lab. -Shane

7

Least Absolute Deviations (LAD)

We now return to the familiar problem of fitting a line (or hyperplane) to a set of

data. We have previously approached this problem by minimizing the sum of the

squares of the errors between the data points and the line, an approach known as

least squares. The least squares solution can be obtained analytically when fitting

a linear function, or through a number of optimization methods (such as Conjugate

Gradient) when fitting a nonlinear function.

The method of least absolute deviations (LAD) also seeks to find a best fit line

to a set of data, but the error between the data and the line is measured differently.

In particular, suppose we have a set of data points (y1,x1), (y2,x2), . . . , (ym,xm),

where yi ∈ R, xi ∈ Rn for i = 1, 2, . . . ,m. Here, the xi vectors are the explanatory

variables and the yi values are the response variables, and we assume the following

linear model:

yi = βTxi + b, i = 1, 2, . . . ,m,

where β ∈ Rn and b ∈ R. The error between the data and the proposed linear

model is given by
n∑

i=1

|βTxi + b− yi|,

and we seek to choose the parameters β, b so as to minimize this error.

Advantages of LAD

The most prominent difference between this approach and least squares is how they

respond to outliers in the data. Least absolute deviations is robust in the presence

of outliers, meaning that one (or a few) errant data points won’t severely affect the

fitted line. Indeed, in most cases, the best fit line is guaranteed to pass through at

least two of the data points. This is a desirable property when the outliers may be

ignored (perhaps because they are due to measurement error or corrupted data).

Least squares, on the other hand, is much more sensitive to outliers, and so is the

better choice when outliers cannot be dismissed. See Figure 1.2.

While least absolute deviations is robust with respect to outliers, small horizontal

perturbations of the data points can lead to very different fitted lines. Hence, the

least absolute deviations solution is less stable than the least squares solution. In

some cases there are even infinitely many lines that minimize the least absolute

deviations error term. However, one can expect a unique solution in most cases.

The least absolute deviations solution arises naturally when we assume that the

residual terms βTxi + b− yi have a particular statistical distribution (the Laplace

distribution). Ultimately, however, the choice between least absolute deviations and

least squares depends on the nature of the data at hand, as well as your own good

judgment.

LAD as a Linear Program

We can formulate the least absolute deviations problem as a linear program, and

then solve it using our interior point method. For i = 1, 2, . . . ,m we introduce the

8 Lab 1. Interior Point I

2 0 2 4 6 8 10 12
5
0
5

10
15
20
25
30
35
40

2 0 2 4 6 8 10 12
0

5

10

15

20

25

30

35

Figure 1.2: Fitted lines produced by least absolute deviations (top) and least squares

(bottom). The presence of an outlier accounts for the stark difference between the

two lines.

artificial variable ui to take the place of the error term |βTxi + b − yi|, and we

require this variable to satisfy ui ≥ |βTxi +b−yi|. This constraint is not yet linear,

but we can split it into an equivalent set of two linear constraints:

ui ≥ βTxi + b− yi,
ui ≥ yi − βTxi − b.

The ui are implicitly constrained to be nonnegative.

Our linear program can now be stated as follows:

minimize

m∑
i=1

ui

subject to ui ≥ βTxi + b− yi,
ui ≥ yi − βTxi − b.

Now for each inequality constraint, we bring all variables (ui,β, b) to the left hand

side and introduce a nonnegative slack variable to transform the constraint into an

9

equality:

ui − βTxi − b− s2i−1 = −yi,
ui + βTxi + b− s2i = yi,

s2i−1, s2i ≥ 0.

Notice that the variables β, b are not assumed to be nonnegative, but in our

interior point method, all variables are assumed to be nonnegative. We can fix this

situation by writing these variables as the difference of nonnegative variables:

β = β1 − β2,

b = b1 − b2,
β1,β2, b1, b2 ≥ 0.

Substituting these values into our constraints, we have the following system of

constraints:

ui − βT
1 xi + βT

2 xi − b1 + b2 − s2i−1 = −yi,
ui + βT

1 xi − βT
2 xi + b1 − b2 − s2i = yi,

ui,β1,β2, b1, b2, s2i−1, s2i ≥ 0.

Writing y = (−y1, y1,−y2, y2, . . . ,−ym, ym)T and βi = (βi,1, . . . , βi,n)T for i =

{1, 2}, we can aggregate all of our variables into one vector as follows:

v = (u1, . . . , um, β1,1, . . . , β1,n, β2,1, . . . , β2,n, b1, b2, s1, . . . , s2m)T .

Defining c = (1, 1, . . . , 1, 0, . . . , 0)T (where only the first m entries are equal to 1),

we can write our objective function as

m∑
i=1

ui = cTv.

Hence, the final form of our linear program is:

minimize cTv

subject to Av = y,

v ≥ 0,

where A is a matrix containing the coefficients of the constraints. Our constraints

are now equalities, and the variables are all nonnegative, so we are ready to use our

interior point method to obtain the solution.

LAD Example

Consider the following example. We start with an array data, each row of which

consists of the values yi, xi,1, . . . , xi,n, where xi = (xi,1, xi,2, . . . , xi,n)T . We will

have 3m+ 2(n+ 1) variables in our linear program. Below, we initialize the vectors

c and y.

10 Lab 1. Interior Point I

>>> m = data.shape[0]

>>> n = data.shape[1] - 1

>>> c = np.zeros(3*m + 2*(n + 1))

>>> c[:m] = 1

>>> y = np.empty(2*m)

>>> y[::2] = -data[:, 0]

>>> y[1::2] = data[:, 0]

>>> x = data[:, 1:]

The hardest part is initializing the constraint matrix correctly. It has 2m rows

and 3m+2(n+1) columns. Try writing out the constraint matrix by hand for small

m,n, and make sure you understand why the code below is correct.

>>> A = np.ones((2*m, 3*m + 2*(n + 1)))

>>> A[::2, :m] = np.eye(m)

>>> A[1::2, :m] = np.eye(m)

>>> A[::2, m:m+n] = -x

>>> A[1::2, m:m+n] = x

>>> A[::2, m+n:m+2*n] = x

>>> A[1::2, m+n:m+2*n] = -x

>>> A[::2, m+2*n] = -1

>>> A[1::2, m+2*n+1] = -1

>>> A[:, m+2*n+2:] = -np.eye(2*m, 2*m)

Now we can calculate the solution by calling our interior point function.

>>> sol = interiorPoint(A, y, c, niter=10)[0]

The variable sol, however, holds the value for the vector

v = (u1, . . . , um, β1,1, . . . , β1,n, β2,1, . . . , β2,n, b1, b2, s1, . . . , s2m+1)T .

We extract values of β = β1 − β2 and b = b1 − b2 with the following code:

>>> beta = sol[m:m+n] - sol[m+n:m+2*n]

>>> b = sol[m+2*n] - sol[m+2*n+1]

Problem 5. The file simdata.txt contains two columns of data. The first

gives the values of the response variables (yi), and the second column gives

the values of the explanatory variables (xi). Find the least absolute devia-

tions line for this data set, and plot it together with the data. Plot the least

squares solution as well to compare the results.

>>> from scipy.stats import linregress

>>> slope, intercept = linregress(data[:,1], data[:,0])[:2]

>>> domain = np.linspace(0,10,200)

>>> plt.plot(domain, domain*slope + intercept)

	Interior Point I

