
Lab 1

Value Function Iteration

Lab Objective: This section teaches the fundamentals of Dynamic Programming

using value function iteration.

Often it is of interest to optimize decision making in some sequential process.

For example, an oil company may need to decide how much oil to excavate and

sell each month as prices change, a person entering retirement may need to decide

how much of their savings to spend each year, or a model of economic growth may

require a decision about how much to invest in capital versus how much to spend

each year. In this lab we will formulate a general dynamic optimization problem.

We will explore techniques for solving such a problem with both finite and infinite

time horizons.

The Sequential Problem, Finite Horizon

Suppose there are time periods t = 0, 1, . . . , T and at each time period we take an

action ct. Furthermore, at the beginning of each time period t we are in some state

Wt. In many cases Wt might represent an available resource, such as money. At

each time we receive some reward, u(Wt, ct), for taking action ct given state Wt.

We assume that rewards are worth more now than later. We let β ∈ (0, 1) represent

what is called the discount factor, which gives the ratio of preference for rewards

today versus rewards tomorrow. For example, receiving a dollar today is preferable

to receiving a dollar in a year because taking a dollar today and putting it into a

savings account results in having more than a dollar in a year. Lastly, over time our

state variable Wt changes according to some rule depending on the previous state

and our actions,

Wt+1 = g(Wt, ct). (1.1)

Equation (1.1) is sometimes referred to as the law of motion, as it describes how

we move from state to state. Mathematically such a problem can be represented as

follows:

maximize

T∑
t=0

βtu(Wt, ct) s.t. Wt+1 = g(Wt, ct)

1



2 Lab 1. Value Function Iteration

where our initial state, W0, is given. There may also be restrictions on our choices

ct. For example, in many applications the state Wt represents the amount of some

resource available, and ct represents the amount we use up in time period t. In this

case we would require ct ∈ [0,Wt].

For simplicity, lets assume that u is a function of ct only (this is often, though

not always, the case in practice). First let’s consider the case that T = 0. So we

maximize

u(c0) (1.2)

over c0 ∈ [0,W0]. In most cases u is increasing, which we will assume here. In this

case it will be optimal to choose the largest value of c0 possible, that is, c0 = W0.

Thinking of W0 as our available resources, this simply means that if we don’t have

future periods to consider, we will use all of it.

In fact, this is always true in the last period. In a problem with T periods we

know that we will use all of our resources remaining in period T . Consider the two

period problem:

max {u(c0) + βu(c1)} (1.3)

where c0 ∈ [0,W0], c1 ∈ [0,W1] and W1 = g(W0, c0). We know that in the last pe-

riod we will use all of our remaining resources, so c1 = W1 = g(W0, c0). Substituting

gives

max {u(c0) + βu(g(W0, c0))}. (1.4)

Now we need only determine c0. Taking the derivative of (1.4) with respect to c0
and setting equal to zero gives the first order condition

u′(c0) = −βu′(g(W0, c0))gc(W0, c0) (1.5)

where gc is the partial derivative of g with respect to c0.

Given a specific form for u we could solve for W1 and obtain the optimal solution.

In fact, we can solve a problem of any length T in this manner, by starting at the last

time period and working backward. We know that WT+1 = 0. Working backward

in time we obtain an equation at each time step t < T by taking the derivative with

respect to ct and setting the equation equal to zero. This process is called backward

induction. The equations at each time step, such as equation (1.5), are sometimes

called the inter-temporal Euler equations. These equations, along with cT = WT ,

make T + 1 equations to go with our T + 1 unknowns {c0, c1, c2, . . . , cT }, where we

can use the law of motion (1.1) to relate the ct and Wt

The Recursive Problem, Finite Horizon

Approaching the problem sequentially like this can be somewhat messy. The dy-

namic programming approach we consider now is more easily adaptable to many

situations. The key to the dynamic programming approach is to define our opti-

mization problem in terms of subproblems. Notice that if we are in time period t,

we face a problem of exactly the same form as the problem at time 0. We are in

some state Wt, and want to maximize the sum from t to T . With this idea in mind,

we define a function Vt(Wt) called the value function. The function Vt gives the



3

value of entering time t in state Wt and making optimal decisions moving forward.

So

Vt−1(Wt−1) = max
ct
{u(ct−1) + βVt(g(Wt−1, ct−1))} .

This is called the Bellman Equation. The key to this formulation is that we decide

what to do in period t − 1 with the assumption that our actions in the remaining

periods will be optimal. This is called the principal of optimality.

Let us consider a specific example from economics called The Cake Eating Prob-

lem. Suppose Wt represents the amount of cake available at time t. At each time

period we can choose how much to consume. What we eat, ct, gives us a reward.

What we save, Wt−ct, does not give us a reward (until it is eaten in a later period).

The law of motion (1.1) becomes

Wt+1 = g(Wt, ct) = Wt − ct (1.6)

Now we have completely defined the problem. The Bellman Equation is

Vt−1(Wt−1) = max
ct
{u(ct−1) + βVt(Wt−1 − ct−1)} .

Notice that by the law of motion, each ct is determined by Wt and Wt+1. In fact,

rearranging (1.6), we have

ct = Wt −Wt+1.

We can therefore rewrite the value function as

Vt−1(Wt−1) = max
Wt

{u(Wt−1 −Wt) + βVt(Wt)} . (1.7)

We see that determining the optimal actions ct is equivalent to determining the

optimal states Wt in the above formulation. The solution to this problem is often

called a policy function. A policy function determines an action based on the current

state. Denoting the policy function by ψ, this can be written as

Wt+1 = ψt (Wt) .

The policy function gives the optimal amount of cake to leave for the next period

(equivalent to the amount of consumption) given the amount of cake at the start

of the period. In other words, it determines the choice of Wt that satisfies the max

condition in (1.7).

As before, we know that in the last time period we should not save anything. So

VT+1(WT+1) = 0, i.e. there is no value in leaving wealth for period T + 1. Stated

in another way, our action at time T should be to eat all of the remaining cake WT ,

so WT+1 = ψT (WT ) = 0. Plugging this result into the Bellman Equation gives us

VT (WT ) = u(WT ). Now consider the value function equation for period T − 1:

VT−1(WT−1) = max
WT

{u(WT−1 −WT ) + βVT (WT )}

= max
WT

{u(WT−1 −WT ) + βu(WT )} .

We can determine this value by optimizing over WT , where 0 ≤WT ≤WT−1. Con-

tinuing backwards in this manner leads us to the solution of the original problem.



4 Lab 1. Value Function Iteration

Problem 1. We recommend reading the entire problem before beginning to

work on it, as many questions may be addressed further on. This applies to

the other problems in this lab as well.

Follow the steps below to solve the problem described above. Take

u(ct) =
√
ct. You will write a function called eatCake that takes parameters

β (the discount factor), N (the number of discrete cake values to consider),

Wmax (the original size of the cake, set to the default value of 1), a keyword

argument finite (set to default value True), a keyword argument T (the num-

ber of time periods, set to default value None), and a keyword argument plot,

which indicates whether or not to plot the computed results. The function

should return arrays representing the value function and the policy function

(we describe how to compute these in the following steps).

1. Approximate the continuum of possible cake sizes by creating an array

of evenly-spaced values that range from to 0 to Wmax inclusive. Let

the number of possible cake values be given by N . In Python, this can

be accomplished easily by using the linspace function in NumPy. You

should obtain an array (call it w) of the form

w = (w1, w2, . . . , wN ),

where w1 = 0 and wN = Wmax.

2. Note that in order to compute the value function, we need u(Wt−1 −
Wt). We will pre-compute all such possible values and store them

in an array, as follows: Create an N by N matrix that contains all

possible values of Wt−1−Wt (where Wt−1 corresponds to rows and Wt

to columns). Make sure that ct ≥ 0 is satisfied by replacing negative

entries in the matrix with zeros. Then take the square root to get a

matrix of u(Wt−1−Wt). To make sure we do not choose Wt−1−Wt < 0

when maximizing, replace the corresponding entries of the u(Wt−1 −
Wt) matrix with a large negative number (e.g. −1010). You should

end up with a matrix whose (i, j)-th entry is equal to
√
wi − wj when

i ≥ j, and is equal to −1010 when i < j.

3. Next, create an N by T+2 (corresponding to t = 0, 1, . . . , T+1) matrix

representing the value function for a given time t and state Wt. We can

initialize it with zeros and begin filling in the columns starting with

the last (which we know is zeros), as explained below.

4. Now we are ready to iterate backward and compute the value function

for each time period. To find VT , we first compute u(WT −WT+1) +

βVT+1(WT+1) for all values of WT and WT+1. This will result in an

N by N matrix where the rows correspond to values of WT and the

columns correspond to values of WT+1.

Now we maximize over choices of WT+1 (choosing how much to save for

the next period). Then we will have a row vector representing the value



5

function for period T across all possible WT+1. Iterate this procedure

to fill in the value function for all t = T + 1, T, . . . , 0.

5. In each iteration, you maximize to find the value function at time t.

Save the values of Wt+1 that achieve the maximum. The result is an

N by T + 1 matrix whose (n, t) entry gives the optimal amount of cake

to leave for period t+ 1, given that we start period t with the the n-th

value of our vector of cake. This is the policy function.

6. If the keyword argument plot is set to True, plot the surface of the Value

and Policy functions. This can be done by including the following

import lines

>>> from matplotlib import pyplot as plt

>>> from matplotlib import cm

>>> from mpl_toolkits.mplot3d import Axes3D

and using the following code:

>>> W = np.linspace(0, Wmax, N)

>>> x = np.arange(0, N)

>>> y = np.arange(0, T+2)

>>> X, Y = np.meshgrid(x, y)

>>> fig1 = plt.figure()

>>> ax1 = Axes3D(fig1)

>>> ax1.plot_surface(W[X], Y, np.transpose(V), cmap=cm.coolwarm)

>>> plt.show()

>>> fig2 = plt.figure()

>>> ax2 = Axes3D(fig2)

>>> y = np.arange(0,T+1)

>>> X, Y = np.meshgrid(x, y)

>>> ax2.plot_surface(W[X], Y, np.transpose(psi), cmap=cm.coolwarm)

>>> plt.show()

where W is the vector of cake amounts, V is the value function, and psi

is the policy function.

7. Return the arrays giving the value function and the policy function.

Solve the problem using cake size 1, discount factor β = .9, number of

time periods T = 10, and number of discrete cake values N = 100. You

should also try plotting the value and policy functions for fixed time periods

across Wt, or for fixed Wt across time, and make sure that these plots fit

your intuition. See Figure 1.1. Your output should agree with the figure.

The Recursive Problem, Infinite Horizon

Next we consider an infinite horizon problem. For simplicity, we continue with

the example from the previous section. Suppose that rather than optimizing over



6 Lab 1. Value Function Iteration

Figure 1.1: Slices of the finite horizon value function for fixed values of t and W ,

respectively.

t = 0, 1, . . . , T , we wish to optimize over an infinite time horizon:

maximize

∞∑
t=0

βtu(Wt, ct) s.t. Wt+1 = g(Wt, ct).

Since at any time t, there are an infinite number of periods remaining, one might

suspect that the optimal policy will not depend on the current time t.

Problem 2. Compute the solution to Problem 1 with T = 1000, and the

rest of the inputs the same. Plot the policy function across time for fixed

Wt = 1. Notice that it is the same for all time periods, except those near

the end time T .

As suggested by the results of Problem 2, the policy function for the infinite

horizon problem does not depend on the time t (this can be proved). That is,

at any time t, the optimal decision depends only on the amount of cake at the

beginning of the period, not the value of t. So everything can now be written in

terms of variables today and variables tomorrow. We will denote variables tomorrow



7

with a “ ′ ”.

V (W ) = max
W ′∈[0,W ]

{u (W −W ′) + βV (W ′)} (1.8)

Note that the value function V on the left-hand-side of (1.8) and on the right-hand-

side are the same function.

Because the problem now has an infinite horizon, the nature of the solution is a

little different. The solution to (1.8) is a policy function W ′ = ψ(W ) that creates

a fixed point in V . In other words, the solution is a policy function ψ(W ) that

makes the function V on the left-hand-side of (1.8) equal the function V on the

right-hand-side.

Define C as an operator on any value function Vk (W ). Let C perform the

following operation.

C
(
Vk (W )

)
≡ max

W ′∈[0,W ]
{u (W −W ′) + βVk (W ′)} . (1.9)

Note that the value function on the right-hand-side of (1.9) and on the left-hand-

side are the same function Vk, but have different inputs–W versus W ′. The operator

C takes in a function Vk, and gives a new function which we will call Vk+1:

Vk+1 (W ) ≡ C
(
Vk (W )

)
.

The value function Vk+1 that results from the operation C is not necessarily the

same as the value function that the system began with (Vk). However, according

to equation (1.8) we seek a V such that C(V ) = V . The solution, then, is the fixed

point in V .

C
(
Vk (W )

)
= Vk+1 (W ) = Vk (W ) = V (W )

When trying to solve a fixed point equation, it is often very helpful to utilize the

Contraction Mapping Principle, which guarantees the existence of a fixed point of a

mapping, provided that the map sends any two distinct inputs to outputs that are

strictly closer to each other than the inputs, in a controlled way. This principle also

provides a constructive way to obtain the fixed point, namely by iterating the map.

Fortunately, it can be shown that if u(·) is real-valued, continuous, and bounded,

β ∈ (0, 1), and that the constraint set W ′ ∈ [0,W ] is nonempty, compact-valued,

and continuous, then the operator C is a contraction and thus we can obtain a

solution V by iteration:

lim
k→∞

Ck
(
V0 (W )

)
= Vk(W ) = V (W )

for any V0.

Remember, in the infinite horizon problem both the value and policy functions

do not depend on time. Computationally, this means that the value and policy

functions in the infinite horizon problem are one dimensional.

Problem 3. Expand your eatCake function to solve the Cake Eating Problem

with an infinite time horizon. If the keyword argument finite has the value

True, then your function should behave as in Problem 1, solving the finite

time horizon problem. However, if finite = False, solve the infinite time



8 Lab 1. Value Function Iteration

horizon problem through the following steps. Both problems will require

you to pre-compute the values u(W −W ′), where W and W ′ range over the

set of discrete cake amounts. Be sure to avoid replicating code by factoring

it out. As in Problem 1, take u(ct) =
√
ct.

1. As in Problem 1, approximate the continuum of possible cake sizes by

a column vector called W that ranges from 0 to Wmax in N steps.

2. Initialize the value function V as a vector of zeros of length N . This is

V0. Perform one iteration of the contraction operation given in equation

(1.9) to get a new value function V1 (this should be very similar to

Problem 1). Determine the resulting policy function W ′ = ψ1 (W ).

[HINT: The policy function should be a vector of length N of optimal

future values of the cake W ′ given the current value of the cake W , and

VT should be an N -length vector representing the value of entering a

period with cake size W .]

3. Measure the distance between the two value functions as the sum of

the squared differences,

δ1 ≡ ‖V1 (W )− V0 (W ′)‖22 = (V1 − V0)
T

(V1 − V0) . (1.10)

Defined in this way, δ1 ∈ [0,∞).

4. Write a loop that performs the contraction operation from steps 2 and

3 iteratively until the distance measure is very small (δk < 10−9). The

distance measure δk being arbitrarily close to zero means you have

converged to the fixed point Vk = Vk+1 = V . (For fun, you can show

that the policy function converges to the same function regardless of

what you put in for your initial policy function value.)

5. If plot = True, plot the converged policy function vector (y-axis) as a

function of the cake amounts (x-axis).

6. Return the value function and policy function arrays.

Compute the value function and policy function for the infinite time

horizon problem with cake size 1, discount factor β = .9, and number

of discrete cake values N = 100. The plot you generate should agree

with Figure 1.2.

Infinite Horizon, Stochastic, i.i.d.

In practice, dynamic programming problems often involve some level of uncertainty.

For example, as time progresses prices may fluctuate, resources may vary, or pref-

erences themselves may change. In this lab, we reexamine the cake eating problem,

this time allowing for uncertainty.

We consider again the problem of optimizing a sequence of decisions over an

infinite time horizon. We assume that the individual’s preferences deviate each



9

Figure 1.2: Policy function for infinite time horizon.

period according to some “shock” ε, where ε is a random variable. We assume that

the shock terms ε for each time period are independent and identically distributed

(i.i.d.). In effect, this means the probabilities associated with the ε are the same

for any time t and do not depend on each other. We assume for now that the ε are

distributed normally with mean µ and variance σ2. The Bellman equation can be

easily rewritten in the following way to incorporate the uncertainty,

V (W, ε) = max
W ′∈[0,W ]

{εu (W −W ′) + βEε′ [V (W ′, ε′)]}, (1.11)

where ε ∼ N(µ, σ2) and E is the unconditional expectation operator over ε. Note

that now the value function depends on two variables. It represents the value of

entering the period with W , the amount of cake, and a preference shock of ε. For

example, in a period where the realization of ε is higher, we will get more value

from the cake eaten in the current period. Because we do not know the value of the

shock in the next period ε′, we consider only the expected value for future time.

As it turns out, we can solve this problem in a manner similar to the infinite

horizon deterministic cake-eating problem considered in the Value Function Itera-

tion lab. It is worth noting that in this case, the value and policy functions will be

two dimensional, as they will depend on both W and ε.

In order to deal with ε computationally, we would like to represent it as a vector

of possible values it could take, along with the corresponding probabilities that it



10 Lab 1. Value Function Iteration

Figure 1.3: Due to the contraction mapping principle, δk decreases as we perform

iterations until it is small enough to meet our convergence tolerance.

takes each of those values. However, N(µ, σ2) is a continuous distribution, so we

cannot represent every value ε could take. We need a discrete distribution that

approximates N(µ, σ2).

To do this, we choose N equally spaced points centered about the mean at which

to approximate the distribution. Call these values ε1, . . . , εN , and let the spacing

between adjacent points be given by δ. We can then break up the support of the

distribution into N bins, where adjacent bins share a common endpoint. Call the

endpoints of these bins v1, . . . , vN+1. By choosing the endpoints to be halfway

between each εk, we have the formula

vk = εk −
1

2
δ, k = 1, . . . , N

and

vN+1 = εN +
1

2
δ.

We can then associate εk with the area under the curve from vk to vk+1. In

Python, we can find the area using the function norm.cdf found in the stats package.

The cdf (cumulative distribution function) gives the area under the curve from −∞
to a specified value. For example, in the following code, eps is the area under the

curve from 0 to 1.



11

Figure 1.4: Discretization of N(µ, σ2). We approximate P (ε = εk) by the area of

the shaded region.

>>> from scipy import stats as st

>>> mu = 0

>>> sigma = 1

>>> eps = st.norm.cdf(1,loc=mu,scale=sigma) - st.norm.cdf(0,loc=mu,scale=sigma)

In general, it is sufficient to take our points εk ranging from µ − 3σ to µ + 3σ,

as this range contains about 99.7% of the probability mass.

Problem 4. Write a function called discretenorm that accepts an integer K

representing the number of discrete points desired, a mean µ, and a standard

deviation σ. It should return a length-K vector of equally-spaced values

ranging from µ − 3σ to µ + 3σ inclusive, and a length-K vector containing

the associated probabilities. Plot the approximation ofN(0, 1) using different

values of K to check that your results are plausible.

Now that we have a discrete distribution for ε, we can solve for the value and

policy functions determined by (1.11).



12 Lab 1. Value Function Iteration

Problem 5. Complete the following steps to solve the problem described

above. Assume that the period utility function is u(c) =
√
c. Write a

function stochEatCake that accepts parameters β (discount factor), N (number

of discrete cake values), a tuple of values e_params, Wmax (the original size of

the cake, set to default value 1), a keyword argument iid (set to default value

True), and a keyword argument plot (set to default value of False). Inside the

function, carry out the steps outlined below.

The argument e_params is a tuple consisting of the values needed to gen-

erate the discrete approximation to ε. In the present case, this tuple consists

(in order) of K (the number of discrete approximations of ε), µ (the mean of

the shock term ε), and σ (the standard deviation of the shock term ε), since

these are the arguments we need to pass to our discretenorm function.

1. First, compute an approximation of ε using the discretenorm function

created in Problem 1. Use K equally spaced points to approximate

N(µ, σ2). Denote the resulting K-length vector of equally-spaced val-

ues by

e = (e1, . . . , eK),

and denote the K-length vector of the associated probabilities by

Γ = (Γ1, . . . ,ΓK).

Note that Γk give the probability P (ε = ek).

Since the values needed for the discretenorm function are contained in

the e_params input, we can feed these values directly into the function

in the following way:

>>> e, gamma = discretenorm(*e_params)

The * operator essentially unpacks the values of a tuple or list.

2. As done previously, create a vector

w = (w1, . . . , wN )

of possible cake sizes. This should be a length-N vector of equally

spaced values from 0 to Wmax, inclusive.

3. Represent the value function as a N ×K matrix v, satisfying

vi,j = V (wi, ej).

(The rows correspond to different values of W and the columns corre-

spond to different values of ε.) Initialize each entry of the matrix to

0.



13

Likewise, represent the policy function as a N ×K matrix p, satisfying

pi,j = ψ(wi, ej).

Initialize all entries to 0.

4. In order to evaluate the value function equation, we need to pre-

compute εu(W −W ′) for all values of ε,W,W ′. Begin by computing all

possible values of u(W−W ′), and storing these values in a N×N array,

as done before. Call this array u. Make sure that the upper triangular

entries of this array are equal to zero, as these entries correspond to

consuming more cake than is available, which is impossible.

The values εu(W − W ′) will be represented by a three-dimensional

array û of size N ×N ×K, satisfying

ûi,j,k = vi,jek.

We can compute this array easily as follows:

>>> import numpy as np

>>> u_hat = np.repeat(u, K).reshape((N,N,K))*e

5. We also need to compute Eε′

[
V (W ′, ε′)

]
for each value of W ′. The

expected value is simply

Eε′

[
V (W ′, ε′)

]
=

K∑
k=1

ΓkV (W ′, e′k).

The result is a length N vector, call it E, satisfying

Ei = Eε′

[
V (wi, ε

′)
]

=

K∑
k=1

Γkvi,k

This calculation can be done by multiplying Γ element-wise to each

row of the value function matrix v, and then summing along the rows.

Something like the following line of code should do the trick:

>>> E = (v*gamma).sum(axis=1)

6. We can now compute the value function contraction

C
(
V (W, ε)

)
≡ max

W ′∈[0,W ]

{
εu (W −W ′) + βEε′

[
V (W ′, ε′)

]}
.



14 Lab 1. Value Function Iteration

The first task is to create an N ×N ×K array c satisfying

ci,j,k = ûi,j,k + βEj .

This can be done in any manner of ways. Below is a one-liner that

does the job.

>>> c = np.swapaxes(np.swapaxes(u_hat, 1, 2) + beta*E, 1, 2)

Now, for any k, for all i < j, set ci,j,k to a large negative number,

say −1010, so that when maximizing over this array, we do not choose

to consume more cake than is available. Again, this can be done in a

variety of different ways, but the following does the job concisely:

>>> c[np.triu_indices(N, k=1)] = -1e10

Finally, maximize over the second axis of c (which corresponds to dif-

ferent values of W ′) to obtain the updated value function matrix:

>>> v_new = np.max(c, axis=1)

You can likewise update your policy function matrix as follows:

>>> max_indices = np.argmax(c, axis=1)

>>> p = w[max_indices]

7. We now have our updated value function matrix vnew as well as the

previous v, which we refer to here as vold. As we iterate on the value

function equation, we need a norm

δ = ‖vnew − vold‖2

that measures the distance between these two value functions to de-

termine convergence. You may compute the norm using the SciPy

function scipy.linalg.norm, or by direct calculation. At the end of each

iteration, make sure to set v to vnew, so that the updates carry through

the loop. Iterate on the contraction until δ < 10−9.

8. If plot = True, make a 3-D surface plot of the policy function for the

converged problem W ′ = ψ (W, ε) which gives the value of the cake

tomorrow as a function of the cake today and the taste shock today.

Do the same for the value function. Example code to create the value

function plot is provided below.

>>> x = np.arange(0,N)

>>> y = np.arange(0,K)

>>> X,Y = np.meshgrid(x,y)

>>> fig1 = plt.figure()



15

Figure 1.5: 3D surface representing the value function for the Stochastic Cake-

Eating problem.

>>> ax1 = Axes3D(fig1)

>>> ax1.plot_surface(w[X], Y, v.T, cmap=cm.coolwarm)

>>> plt.show()

Creating the policy function plot is similar.

9. Return the converged value function matrix v and policy function ma-

trix p.

Test your function using values β = .9, N = 100, K = 7, σ = .5, µ = 4σ,

and plot = True. The proper way to set this up and call the function is as

follows:

>>> e_params = (7, 4*.5, .5)

>>> stuff = stochEatCake(.9, 100, e_params, plot=True)

Infinite Horizon, Stochastic, AR(1)

In the previous example, we assumed that the shocks at time t were independent

of what happened in previous periods. Often a shock may depend on recent events.



16 Lab 1. Value Function Iteration

We will assume now that the shocks are persistent, meaning preferences in the

current period are more likely to be close to what they were in the previous period.

We can characterize the persistence by what is called an autoregressive process of

order one, denoted AR(1). Such a process is defined as follows.

ε′ = (1− ρ)µ+ ρε+ ν′ where ρ ∈ (0, 1) and ν ∼ N(0, σ2). (1.12)

Essentially, instead of allowing the shocks to have a mean which is independent

of the past, the mean is now a weighted average (weighted by ρ) of some µ and the

previous realization of the shock, ε. As it turns out, we can approximate this process

by thinking of it as a Markov Chain. This means we need to determine a discrete set

of points representing possible values of ε and a Markov transition matrix that gives

the probabilities of moving from one value of ε to another. There are methods for

determining the discrete approximation of ε with a Markov transition matrix. These

methods are beyond the scope of this section, but you can use the file tauchenhussey

.py to implement them in the next problem.

The Bellman equation becomes the following, in which the only change from the

i.i.d. shock case is that the expectations operator is now conditional on the current

shock ε:

V (W, ε) = max
W ′∈[0,W ]

{εu (W −W ′) + βEε′|ε [V (W ′, ε′)]},

where ε′ is distributed according to (1.12). Let Γi,j = P
(
ε′j |εi

)
where ε′j is the

value of the shock in the next period and εi is the value of the shock in the current

period. In other words, Γ is the Markov transition matrix.

The solution to this problem is of the same type as that in the i.i.d. case, since

the only difference is the probability distributions of the ε.

Problem 6. Expand your stochEatCake function to handle the case of AR(1)

shock terms. The function should handle this case for the parameter value

iid = False, and should handle the previous case of normally distributed i.i.d.

shock terms for the parameter value iid = True. You will need to add a few

“if ... else” statements, as well as implement the steps outlined below, but

most of the code will remain unchanged.

1. In the AR(1) case, the e_params argument should be a tuple of values

needed to generate the arrays e and Γ that approximate the values

and distribution of ε as a Markov chain. Use the file tauchenhussey.py

to calculate these arrays. The provided Python function tauchenhussey

produces the vector e of length M and an M ×M transition matrix

Γ. Thus, you simply need the following lines of code, similar to the

previous case.

>>> from tauchenhussey import tauchenhussey

>>> e, gamma = tauchenhussey(*e_params)

2. Because our values for e and Γ are different in the AR(1) case than in



17

the i.i.d. case, we must compute the expectation in a different manner.

In particular, we need to compute the conditional expectation

Eε′|ε

[
V (W ′, ε′)

]
.

We obtain a two-dimensional array, since the expectation depends on

both W ′ and on ε. The expectation can be computed by the matrix

multiplication vΓT . Your code should match the following.

>>> E = v.dot(gamma.T)

3. The last difference comes in computing the array c. Fortunately, it is

easier in this case. Recall that c gives the values for

εu (W −W ′) + βEε′|ε

[
V (W ′, ε′)

]
.

The array û contains the values for the first term in the expression,

and the array E contains the values for the expectation term. Hence,

we obtain c by simple addition. Array broadcasting makes this work

without problems.

>>> c = u_hat + beta*E

You will still need to set the upper triangular entries of c to a large

negative number, just as in the previous case.

Those are the only differences. Let the following code snippet be a guide-

line for how to implement these differences.

>>> if iid:

>>> # compute E as outlined in the previous problem

>>> else:

>>> # compute E as outlined in the current problem

Now test your function with β = .9, N = 100, iid = False, and plot =

True. As inputs to tauchenhussey, let K = 7, the mean of the process µ = 4σ,

ρ = 1/2, σ = 1/2, and

baseSigma = (0.5 +
ρ

4
)σ + (0.5− ρ

4
)

σ√
1− ρ2

.

Your e_params parameter will therefore be a tuple of values containing (in

order) K, µ, ρ, σ, and baseSigma.


	Value Function Iteration

