
Lab 1

Internet Protocols

Lab Objective: Learn how TCP and HTTP facilitate communication between

computers.

The Internet Protocol Suite is the set of communication protocols which underly

most computer networks. Because TCP (Transmission Control Protocol) and IP

(Internet Protocol) are two of the oldest and most important protocols, the entire

suite is sometimes called TCP/IP. There many protocols in the suite are divided

into four abstraction layers:

1. Application: Software that utilizes transport protocols to move information

between computers. This layer includes protocols important for email, file

transfers, and browsing the web.

2. Transport: Protocols that define basic high level communication between two

computers. The two most common protocols in this layer are TCP and UDP.

TCP is by far the most widely used due to its reliability. UDP, however,

trades reliability for low latency.

3. Internet: Protocols that handle routing and movement of data on a network.

4. Link: Protocols that deal with local networking hardware such as routers and

switches.

TCP

TCP dictates how computers connect to each other, exchange bits of information

called packets, and then close the connection. TCP/IP is very reliable, ordered,

and error-checked.

Specifically, TCP creates network sockets. These sockets send and receive data

packets. While we would normally think of sending data between two different

machines, two sockets on the same machine can communicate via TCP as well.

Using the Python socket module, we will demonstrate how to create a network

socket (the server to listen for incoming data, and how to create a second socket

(the client) to send data.

1



2 Lab 1. Internet Protocols

Creating the Server

First, create a new socket object. The socket object will be able to listen for and

accept incoming connections from other sockets.

The two input arguments specify the socket type. Further description of socket

types is in the python documentation.

import socket

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

We then define an address and a port for the socket to listen on. A port is

analogous to a mailbox on the computer. There are 65535 available ports. Of

those, about 250 are commonly used. Certain ports are have pre-defined uses. For

example:

• 0 to 1023: Special reserved ports

• 80, 443: Commonly used for web traffic

• 25, 110, 143, 465: Commonly used for email servers

We also specify an address for the host, which is analogous to the ”mailing address”

of the machine on which the server is running. The address may be set to the

computer’s IP address, to 'localhost', or to an empty string. We bind the socket to

the port and address, then call listen to tell it to listen for connections.

address = '127.0.0.1' #the local machine

s.bind((address, 33498)) #bind to an arbitrary port number

s.listen(1)

Next we tell the socket what do with incoming connections. Once a connection

is made, the accept method returns the connection, which is itself a socket object.

The connection object receives data in blocks, so we specify a block size in bits.

Data is received in string form.

The connection object can also send back data. In the code below, the con-

nection simply echoes back whatever data it receives. After all the data has been

received, we close the connection.

size = 2048 #block size

conn, add = s.accept() #conn is our new socket object for receiving/sending data

print "Accepting connection from:", addr

while True:

data = conn.recv(size) #read 20 bytes from the incoming connection

#terminate the connection if data stops coming in (no more blocks to receive)

if not data:

break

conn.send(data)

conn.close()



3

Command Description

bind((address, port)) Binds to a port and an address.

listen Starts listening for requests.

accept Accepts a connection from a client, and returns a

new socket object and a connection address.

recv(size) Reads and returns a block of incoming data.

send(data) Sends data to the client.

close Closes the socket.

gethostname Returns the host name of the machine.

getsockname Returns the socket’s own address.

Table 1.1: Table of Socket Commands

Creating the Client

The client socket will connect to our server. We create the socket the same way as

before:

import socket

client = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

We specify the address of the server, and the port (this needs to be the same

port on which the server is listening). We then connect to the server.

ip = '127.0.0.1'
port = 33498

client.connect((ip, port))

Once connected, the client can send and receive data. Unlike the server, the

client sends and reads the data itself instead of creating a new connection socket.

When we are done with the client, we close it.

size = 2048 #block size

msg = "Trololololo, lolololololo, ahahahaha."

client.send(msg)

print "Waiting for the server to echo back the data..."

data = client.recv(size)

print "Server echoed back:", data

client.close()

To see the client and server communicate, open a terminal and run the server.

Then run the client in a separate terminal.

Problem 1. Write a file called simple_server.py. When run, this file creates

a server socket, accepts a connection and then reads incoming data. The

server should append the current time onto each data block, then send it

back to the client. (Look at time.strftime('%H:%M:%S') for formatting the

current time.)



4 Lab 1. Internet Protocols

Also write a file called simple_client.py. In this file, create a client socket

and connect to the server created in simple_server.py. The client should send

a message to the server and print the server’s response.

Problem 2. Write a file called rps_server.py, which plays rock-paper-scissors

with a client. The server should accept a connection, and while the connec-

tion is open, cycle through the following loop:

• Receive a move (”rock”,”paper”, or ”scissors”).

• Generate a random move of its own. Print both moves.

• Determine who won the round.

• Send ”you win”, ”you lose”, or ”draw” back to the client, depending

on the outcome of the round. If the move is invalid, send back ”invalid

move.”

• If the client won, break the loop and close the connection.

Also write a file called rps_client.py. The client should connect to the

server and then enter a while loop. In the loop, the client sends the server a

move and prints the server’s response. The client should break the loop and

close once it receives a ”you win” back from the server.

Although these examples are simple, we use a similar pattern for every transfer

of data over TCP. For simple connections, the amount of work the programmer has

to do can be minimal. However, imagine trying to request a complicated web page.

We would have to manage possibly hundreds of connections. We would naturally

want to use a higher level protocol that takes care of the smaller details for us.

HTTP

HTTP stands for Hypertext Transfer Protocol. The protocol is centered around

a request and response paradigm. A client makes a request to a server and the

server replies with response. HTTP is an application layer networking protocol.

This means it is a higher level protocol than TCP, taking care of many of the small

details of TCP for us. It usually relies on the underlying TCP protocol to provide

networking capabilities. There are several methods defined for HTTP, but the two

most common are GET and POST. GET requests are typically used to request

information from a server. POST requests are sent to the server with the intent of

modifying the state of the server. We can send additional information with both

GET and POST requests.

Every HTTP request consists of two parts: a header and a body. The headers

contain important information about the request such as the type of request, en-

coding, among other things. We can add custom headers to any request to provide



5

additional information. The body of the request contains the requested data. The

body of a request may or may not be empty.

We can setup an HTTP connection in Python as demonstrated below. We will

encourage you to use the Requests library instead of the modules in the standard

library. However, the code below is illustrative of the steps in making an HTTP

connection

import httplib

conn = httplib.HTTPConnection("www.example.net")

conn.request("GET", "/")

resp = conn.getresponse()

if resp.status == 200:

headers = resp.getheaders()

data = resp.read()

conn.close()

print headers

print data # long string

We start by creating a connection to specific host. Then we make a request. In

this case, we use GET request. The host we are connected to will respond and we

retrieve the response. We will need to check the status of the response to know if

our request was processed successfully. A status code of 200 means that everything

went alright. We can now attempt to read the data of the response. At the end we

explicitly close the connection.

This exchange is greatly simplified by the Requests library

import requests

r = requests.get("http://www.example.net")

r.close()

print r.headers

print r.content

Now, lets demonstrate various things we can do with HTTP requests. We will

use a web service called HTTPBin which is very helpful in developing applications

that make HTTP requests. When making a GET request, we can send along a list

of parameters. These parameters should be a Python dictionary.

>>> data = {'key1': 0, 'key2': 1}

>>> r = requests.get("http://httpbin.org/get", params=data)

>>> print r.content

When we post to a server, we have the option of sending data. This data can be

a file object, a dictionary or a string. To send our data via post, we first serialize it

to JSON and then send the resulting string to the request.

>>> p = requests.post("http://httpbin.org/post", data=json.dumps(data))

>>> print p.content

Problem 3. Included is nameserver.py. This simple server has allows clients

to send the last name of a famous computer scientist with GET and returns

the corresponding first name. For example, running the following code results



6 Lab 1. Internet Protocols

in the message ‘Grace’ from the server.

r = requests.get("http://localhost:8000?lastname=Hopper")

Expand the functionality of the server so that a client can also use GET to

obtain a dictionary of everybody whose last name starts with a given string.

Then add a method so that clients can add a person to the dictionary (or

modify an existing entry) using PUT.


	Internet Protocols

