
Lab 16

BeautifulSoup

Lab Objective: Learn how to load HTML documents into BeautifulSoup and

navigate the resulting BeautifulSoup object

HTML

HTML, or Hyper Text Markup Language is the standard markup language to create

webpages. Just like XML, HTML tags describe different document content and are

surrounded by angle brackets. Most tags can be combined with attributes such as

id or class to help identify individual tags and make navigating the HTML tree

much more simple. You can find a list of all the current HTML tags at http:

//htmldog.com/reference/htmltags. Here is an example:

<html>

<body>

<p>

Click here for ←↩
more information.

</p>

</body>

</html>

The above example would output a single line

Click here for more information.

with ‘here’ being a clickable link to the website http://www.example.com/info.

This HTML code could also be written as a single line, albeit less readable, as

follows:

<html><body><p>Click here for←↩
more information.</p></body></html>

If a given tag doesn’t contain any text or other tags, it could be written in a single

pair of brackets as

151

http://htmldog.com/reference/htmltags
http://htmldog.com/reference/htmltags
http://www.example.com/info

152 Lab 16. BeautifulSoup

<*tag_name* ... *attributes*/>

The HTML of a website is very easy to view. Go to your favorite website, such as

http://www.example.com/myfavoritesite, in whatever browser you are familiar

with. Once on the website, right click with the mouse pointer and look for ‘View

Page Source’ or a similarly worded option. Click it and the browser will open a new

browser with the HTML code for your site. Some code is easy to follow, other code

not so much.

Problem 1. Go to the website http://www.example.com and open the

source code. What are all the tags used? What is the value of the type

attribute associated with the style tag?

Loading HTML into BeautifulSoup

Now that we know what HTML is, we can use BeautifulSoup to create a BeautifulSoup

object. BeautifulSoup is a library capable of pulling data out of HTML scripts and

files, and works with a parser to provide commands to navigate and search the re-

sulting HTML tree. Make sure the module bs4 is installed in your Python packages.

This section takes most of its material from http://www.crummy.com/software/

BeautifulSoup/bs4/doc/index.html.

First we want a variable to store our HTML code as a string.

>>> doc = """

... <html><body><p>

... Click here for more ←↩
information.

... </p></body></html>

... """

Next, import BeautifulSoup from the bs4 module. Call BeautifulSoup() which takes

as parameters the HTML string and an HTML parser. It returns a BeautifulSoup

object, which represents the document as a nested data structure.

>>> from bs4 import BeautifulSoup

>>> soup = BeautifulSoup(doc, 'html.parser')

Including the HTML parser is optional, but you will get a warning if none

is included. If that’s the case, BeautifulSoup uses the HTML parser included in

Python’s standard library. Although other parsers are permitted, we have no need

for them in our examples.

Once the document is stored, we can use prettify() to print the HTML in a

readable format. This will be useful later to make sure we are getting the correct

HTML from websites.

>>> print(soup.prettify())

<html>

http://www.example.com/myfavoritesite
http://www.example.com
http://www.crummy.com/software/BeautifulSoup/bs4/doc/index.html
http://www.crummy.com/software/BeautifulSoup/bs4/doc/index.html

153

<body>

<p>

Click here for more ←↩
information.

</p>

</body>

</html>

Problem 2. Make a soup out of the following string. Then prettify it.

html_doc = """

<html><head><title>The Three Stooges</title></head>

<body>

<p class="title">The Three Stooges</p>

<p class="story">Have you ever met the three stooges? Their names are

Larry,

Mo and

Curly;

and they are really hilarious.</p>

<p class="story">...</p>

"""

Note

Note that the <html> and <body> tags are never actually closed. The

parser used with bs4 will automatically close these hanging tags, so

don’t get too stressed out by this example.

Navigating the HTML Tree

Since BeautifulSoup() returns an object which acts like a nested data structure,

navigating it is very intuitive. We will use the following for the rest of the section,

unless otherwise specified.

>>> soup = BeautifulSoup(html_doc, 'html.parser')

where html_doc is the document defined in problem 2.

By Tag Name

To navigate the HTML parse tree, simply say the name of the tag you want. The

output will be the called tag plus any nested tags or text. Below are some examples.

>>> soup.head

154 Lab 16. BeautifulSoup

<head><title>The Three Stooges</title></head>

>>> soup.title

<title>The Three Stooges</title>

It is even possible to continue navigation down the tree through tags contained

within tags.

>>> soup.body.b

The Three Stooges

Notice there are three <a> tags. What do you think happens when you type in

soup.a? It only gives you the first tag by that name.

>>> soup.a

Larry

Problem 3. What will the following code return?

>>> soup.p

Tag Properties

Once a tag has been selected, you can access its properties such as its name, at-

tributes, and strings where applicable.

A tag’s name is found using .name.

>>> soup_properties = BeautifulSoup('<a href="http://example.com/larry" class="←↩
stooge" id="link1">Larry')

>>> tag = soup.a

>>> tag.name

'p'

The attributes of a tag, if it has them, are stored in a dictionary and can

be accessed as such. Accessing all the tags at once can be done through .attrs.

Individual tags values can be reached by calling the key associated with it. If you

try to access a key that is not an attribute, you get None in return.

>>> tag.attrs

{'class': ['stooge'], 'href': 'http://example.com/larry', 'id': 'link1'}

>>> tag['class']

['stooge']

>>> tag['href']

'http://example.com/larry'

>>> tag['id']

'link1'

155

>>> print(tag['color'])

None

Note that class returns a list. This is because the class attribute could have more

than one value. This may show up in some HTML trees, but is not very common.

If a tag contains any text, it can accessed with .string.

>>> tag.string

u'Larry'

By Family Relations

Once we have selected a tag, we have several options available to navigate up, down,

and sideways through an HTML tree.

Going Down

Tags may contain other tags or text. These are the children of a tag, and the call

.contents returns the children of the parent tag.

>>> head_tag = soup.head

<head><title>The Three Stooges</title></head>

>>> head_tag.contents

[<title.The Three Stooges</title>]

>>> title_tag = head_tag.contents[0]

>>> title_tag

<title>The Three Stooges</title>

>>> title_tag.contents

[u'The Three Stooges']

Notice in the last input, the child of title_tag was the string 'The Three Stooges'. If

you try to use .contents on this string, you would get nothing in return since strings

can’t contain children.

Note

One thing to note is the following:

>>> children_doc = """

... <html><head>The Three Little Pigs</head>

... <body>

... <p>The first little piggy</p>

... <p>The second little piggy</p>

... <p>The third little piggy</p>

... </body>

... </html>"""

>>> pig_soup = BeautifulSoup(children_doc, 'html.parser')

>>> pig_soup.body.contents

156 Lab 16. BeautifulSoup

[u'\n',

<p>The first little piggy</p>,

u'\n',

<p>The second little piggy</p>,

u'\n',

<p>The third little piggy</p>,

u'\n']

In this example, the return carriage is counted as a child of <body> for each

carriage return used within the <body> tag. This will be very important when

trying to navigate between siblings, or children of a common tag.

Instead of creating a list, you can use .children to create a generator of children

tags. Using the previous example, we get the following (remember the extra carriage

returns):

>>> for pig in pig_soup.body.children:

... print(repr(pig)) #use repr() to ignore escape sequences

u'\n'

<p>The first little piggy</p>

u'\'n

<p>The second little piggy</p>

u'\n'

<p>The third little piggy</p>

u'\n'

There is a .descendants attribute which will recursively go through a tag’s chil-

dren, the children’s children, etc. It is left to you to look at the online documentation

for this attribute.

If a tag has only one child, and that child is a string, the child is available using

.string. If a tag has one tag, and that tag has a single string as a child, then the

parent tag can use .string to access the string as well.

>>> head_tag = soup.head

>>> print(head_tag)

<head><title>The Three Stooges</head></title>

>>> title_tag = head_tag.contents[0]

>>> print(title_tag)

<title>The Three Stooges</title>

>>>head_tag.string

u'The Three Stooges'

>>>title_tag.string

u'The Three Stooges'

If a tag contains more than one string, .string return None. However, you can use

.strings to return a generator that iterates through all strings contained within a

tag. Check the online documentation for examples.

Going Up

Just as tags can have childern, tags also have a parent. To access a tag’s parent,

simply use the .parent attribute.

157

>>> title_tag = soup.title

>>> title_tag

<title>The Three Stooges</title>

>>> title_tag.parent

<head><title>The Three Stooges</title></head>

The parent of a string would be the tag which contains it.

>>> tag = title_tag.string

>>> print(tag)

The Three Stooges

>>> tag.parent

<title>The Three Stooges</title>

You could use .parents to iterate through all parents of a given tag. Examples can

be found in the online documentation.

Going Sideways

Consider the following document, taken from the online documentation:

>>> sibling_soup = BeautifulSoup("<a>text 1<c>text 2</c>")

>>> print(sibling_soup.prettify())

<html>

<body>

<a>

text 1

<c>

text 2

</c>

</body>

</html>

Note the and <c> tags are on the same level, underneath the <a> tag. These tags

are considered siblings. Siblings in an HTML tree will always appear with the same

indentation underneath a parent tag.

Use the attributes .next_sibling and .previous_sibling to navigate between these

sibling elements. If a sibling has no next or previous sibling, these attributes are

assigned None.

>>> sibling_soup.b

text 1

>>> sibling_soup.b.next_sibling

<c>text 2</c>

>>> sibling_soup.c.previous_sibling

text 1

>>> sibling_soup.c.next_sibling #<c> has no next sibling

None

158 Lab 16. BeautifulSoup

>>> sibling_soup.b.string

u'text 1'

>>> print(sibling_soup.b.string.next_sibling) #text 1 and text 2 are not siblings

None

Recall the pig_soup example, how we saw extra carriage returns between the <p>

tags.

>>> pig_soup.body.contents

[u'\n',

<p>The first little piggy</p>,

u'\n',

<p>The second little piggy</p>,

u'\n',

<p>The third little piggy</p>,

u'\n']

What do you expect pig_soup.body.p.next_sibling to return?

>>> pig_soup.body.p.next_sibling

u'\n'

>>> pig_soup.body.p.next_sibling.next_sibling

<p>The second little piggy</p>

We need to make two calls to .next_sibling in order to get the next <p> tag. Keep

this in mind for future questions as you navigate across siblings.

Just as with parents and children, there are also sibling generators .next_siblings

and .previous_siblings to iterate through all the siblings of a given tag. As before,

check the online documentation for more information.

Problem 4. Answer the following questions.

1. In the Three Stooges example, what code would you use to return the

following:

u'Mo'

2. How would you return the following:

<p class="story''>...</p>

3. Download ’example.htm’ associated with the lab into your working di-

rectory. You can go to http://example.com to see the site where this file

originates from. The following code allows you to bring in any file into

BeautifulSoup()

>>> example_soup = BeautifulSoup(open('example.htm'),'html.parser')

This creates a beautifulsoup object representing the HTML source code from

http://example.com

159

the website http://www.example.com. Use two different methods to access

the following line:

u'More information...'

By find()

In actual website HTML, often there are too many tags which share a common

name. It would be nice to find characteristics that might be unique for a given

tag. Look back at our previous examples and think about what characteristics

differentiate tags with the same name. BeautifulSoup uses .find() to allow you to

search for a tag not only by name, but also by a specific attribute value or strings.

The following examples refer back to the “Three Stooges” HTML document in

problem 2.

Search by name:

>>> soup.find('b') #Pass in tag names, just like soup.b

The Three Stooges

>>> #or use the name parameter

>>> soup.find(name='a') #Still only returns the first instance

Larry

Search by attribute:

>>> soup.find(id='link3') #Search by unique id attribute

Curly

>>> #class is a Python keyword. Use 'class_' for the attribute key.

>>> soup.find(class_='title')

<p class="title">The Three Stooges</p>

>>> #use the attrs parameter

>>> soup.find(attrs={'id':'link3'})

Curly

>>> #combine attributes

>>> soup.find(attrs={'class':'stooge', 'href':'http://example.com/curly'})

Curly

>>> soup.find(class_='stooge', href='http://example.com/curly')

Curly

>>> #use True to find the first tag containing a given attribute

>>> soup.find(href=True)

Larry

Search by string:

>>> soup.find(string='Mo') #Recall strings act as individual units

u'Mo'

http://www.example.com

160 Lab 16. BeautifulSoup

>>> soup.find(string='Mo').parent #access the tag through the parent

Mo

Search by combining parameters:

>>> soup.find('a', attrs={'id':'link2','class':'stooge'})

Mo

Problem 5. Refer to the example.htm file. Load it using BeautifulSoup.

What is the website associated with the “More information...” link? Find

two methods to access the website string.

Problem 6. Download ’SanDiegoWeather.htm’ and load it into Beautiful-

Soup. You can find the corresponding website at http://www.wunderground.

com/history/airport/KSAN/2015/1/1/DailyHistory.html?req_city=San+

Diego&req_state=CA&req_statename=California&reqdb.zip=92101&reqdb.

magic=1&reqdb.wmo=99999&MR=1.

1. What is the tag which contains the date, Thursday, January 1, 2015?

2. What are the tags which contain the links ’Previous Day’ and ’Next

Day’?

3. What is the tag which contains the number associated with the Actual

Max Temperature.

[Hint: You can do a ctrl+f to find where the text is in the HTML, then study

the tags around it.]

By find_all()

Recall that when a tag appeared multiple times, calling that tag name would return

the first tag of that name.

>>> soup.a

Larry

If you need to get all instances of a certain tag, use the find_all() command.

>>> soup.find_all('a')

[Larry,

Mo,

Curly]

This works with all the same arguments as the .find() function. You may refer

to the online documentation for explicit examples.

http://www.wunderground.com/history/airport/KSAN/2015/1/1/DailyHistory.html?req_city=San+Diego&req_state=CA&req_statename=California&reqdb.zip=92101&reqdb.magic=1&reqdb.wmo=99999&MR=1
http://www.wunderground.com/history/airport/KSAN/2015/1/1/DailyHistory.html?req_city=San+Diego&req_state=CA&req_statename=California&reqdb.zip=92101&reqdb.magic=1&reqdb.wmo=99999&MR=1
http://www.wunderground.com/history/airport/KSAN/2015/1/1/DailyHistory.html?req_city=San+Diego&req_state=CA&req_statename=California&reqdb.zip=92101&reqdb.magic=1&reqdb.wmo=99999&MR=1
http://www.wunderground.com/history/airport/KSAN/2015/1/1/DailyHistory.html?req_city=San+Diego&req_state=CA&req_statename=California&reqdb.zip=92101&reqdb.magic=1&reqdb.wmo=99999&MR=1

161

Advanced Techniques

The following examples are techniques that can aid you in your search for specific

tags. Consider the “Three Stooges” example from before. Suppose you want to find

the tag that includes the url http://example.com/curly. You could search for it

using the following:

>>> soup.find(href='http://example.com/curly)

Curly

This could be annoying to type out the whole website. Instead you could use regular

expressions as follows:

>>> import re

>>> soup.find(href=re.compile('curly')) #find href containing 'curly' in it.

Curly

This method can be used for tag names, attributes, and strings as well.

>>> soup.find(string=re.compile('^Cu')) #find string that starts with 'Cu'.

Curly

If you want to find a tag that has an attribute with a value, but don’t care what

the value is, you can use True and False in place of actual values. The following

returns all tags that even have the href attribute:

>>> soup.find_all(href=True)

[Larry,

Mo,

Curly]

Problem 7. Use BeautifulSoup to load the ’Big Data dates’ file. This page

is found at www.federalreserve.gov/releases/lbr, although the actual

website may include more dates. Notice all the release dates of bank data,

ranging from 2003 to 2015 in the file you downloaded. Using find_all() and

re, find all the links to bank data from September 30, 2003 to December 31,

2014. (Don’t include the 2015 links) There should be 46 links total that you

list.

http://example.com/curly
www.federalreserve.gov/releases/lbr

