
Lab 13

An Introduction to
Parallel Programming
using MPI

Lab Objective: Learn the basics of parallel computing on distributed memory

machines using MPI for Python

Why Parallel Computing?

Over the past few decades, vast increases in computational power have come through

increased single processor performance, which have almost wholly been driven by

smaller transistors. However, these faster transistors generate more heat, which

destabilizes circuits. The so-called “heat wall” refers to the physical limits of single

processors to become faster because of the growing inability to sufficiently dissipate

heat.

To get around this physical limitation, parallel computing was born. It began,

as with most things, in many different systems and styles, involving various systems.

Some systems had shared memory between many processors and some systems had

a separate program for each processor while others ran all the processors off the

same base program.

Today, the most commonly used method for high performance computing is

a single-program, multiple-data system with message passing. Essentially, these

supercomputers are made up of many, many normal computers, each with their

own memory. These normal computers are all running the same program and are

able to communicate with each other. Although they all run the same program file,

each process takes a different execution path through the code, as a result of the

interactions that message passing makes possible.

Note that the commands being executed by process a are going to be different

from process b. Thus, we could actually write two separate computer programs

in different files to accomplish this. However, the most common method today

has become to write both processes in a single program, using conditionals and

techniques from the Message Passing Interface to control which lines of execution

get assigned to which process.

This is a very different architecture than “normal” computers, and it requires

a different kind of software. You can’t take a traditional program and expect it
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126 Lab 13. Introduction to Parallel Programming

to magically run faster on a supercomputer; you have to completely design a new

algorithm to take advantage of the unique opportunities parallel computing gives.

MPI: the Message Passing Interface

At its most basic, the Message Passing Interface (MPI) provides functions for send-

ing and receiving messages between different processes.

MPI was developed out of the need for standardization of programming parallel

systems. It is different than other approaches in that MPI does not specify a

particular language. Rather, MPI specifies a library of functions–the syntax and

semantics of message passing routines–that can be called from other programming

languages, such as Python and C. MPI provides a very powerful and very general

way of expressing parallelism. It can be thought of as “the assembly language of

parallel computing,” because of this generality and the detail that it forces the

programmer to deal with 1. In spite of this apparent drawback, MPI is important

because it was the first portable, universally available standard for programming

parallel systems and is the de facto standard. That is, MPI makes it possible for

programmers to develop portable, parallel software libraries, an extremely valuable

contribution. Until recently, one of the biggest problems in parallel computing was

the lack of software. However, parallel software is growing faster thanks in large

part to this standardization.

Problem 1. Most modern personal computers now have multicore proces-

sors. In order to take advantage of the extra available computational power,

a single program must be specially designed. Programs that are designed for

these multicore processors are also “parallel” programs, typically written us-

ing POSIX threads or OpenMP. MPI, on the other hand, is designed with a

different kind of architecture in mind. How does the architecture of a system

for which MPI is designed differ what POSIX threads or OpenMP is designed

for? What is the difference between MPI and OpenMP or Pthreads?

Why MPI for Python?

In general, parallel programming is much more difficult and complex than in serial.

Python is an excellent language for algorithm design and for solving problems that

don’t require maximum performance. This makes Python great for prototyping and

writing small to medium sized parallel programs. This is especially useful in parallel

computing, where the code becomes especially complex. However, Python is not

designed specifically for high performance computing and its parallel capabilities

are still somewhat underdeveloped, so in practice it is better to write production

code in fast, compiled languages, such as C or Fortran.

We use a Python library, mpi4py, because it retains most of the functionality

of C implementations of MPI, making it a good learning tool since it will be easy

1Parallel Programming with MPI, by Peter S. Pacheco, p. 7
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to translate these programs to C later. There are three main differences to keep in

mind between mpi4py and MPI in C:

� Python is array-based. C and Fortran are not.

� mpi4py is object oriented. MPI in C is not.

� mpi4py supports two methods of communication to implement each of the

basic MPI commands. They are the upper and lower case commands (e.g.

Bcast(...) and bcast(...)). The uppercase implementations use traditional

MPI datatypes while the lower case use Python’s pickling method. Pickling

offers extra convenience to using mpi4py, but the traditional method is faster.

In these labs, we will only use the uppercase functions.

Introduction to MPI

As tradition has it, we will start with a Hello World program.

1 #hello.py

2 from mpi4py import MPI

4 COMM = MPI.COMM_WORLD

RANK = COMM.Get_rank()

6

print "Hello world! I'm process number {}.".format(RANK)

hello.py

Save this program as hello.py and execute it from the command line as follows:

$ mpirun -n 5 python hello.py

The program should output something like this:

Hello world! I'm process number 3.

Hello world! I'm process number 2.

Hello world! I'm process number 0.

Hello world! I'm process number 4.

Hello world! I'm process number 1.

Notice that when you try this on your own, the lines will not necessarily print in

order. This is because there will be five separate processes running autonomously,

and we cannot know beforehand which one will execute its print statement first.

Warning

It is usually bad practice to perform I/O (e.g., call print) from any process be-

sides the root process, though it can oftentimes be a useful tool for debugging.
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Execution

How does this program work? As mentioned above, mpi4py programs are follow

the single-program multiple-data paradigm, and therefore each process will run the

same code a bit differently. When we execute

$ mpirun -n 5 python hello.py

a number of things happen:

First, the mpirun program is launched. This is the program which starts MPI, a

wrapper around whatever program you to pass into it. The “-n 5” option specifies

the desired number of processes. In our case, 5 processes are run, with each one

being an instance of the program “python”. To each of the 5 instances of python,

we pass the argument “hello.py” which is the name of our program’s text file,

located in the current directory. Each of the five instances of python then opens the

hello.py file and runs the same program. The difference in each process’s execution

environment is that the processes are given different ranks in the communicator.

Because of this, each process prints a different number when it executes.

MPI and Python combine to make wonderfully succinct source code. In the

above program, the line from mpi4py import MPI loads the MPI module from the

mpi4py package. The line COMM = MPI.COMM_WORLD accesses a static communicator ob-

ject, which represents a group of processes which can communicate with each other

via MPI commands.

The next line, RANK = COMM.Get_rank(), is where things get interesting. A “rank”

is the process’s id within a communicator, and they are essential to learning about

other processes. When the program mpirun is first executed, it creates a global

communicator and stores it in the variable MPI.COMM_WORLD. One of the main purposes

of this communicator is to give each of the five processes a unique identifier, or

“rank”. When each process calls COMM.Get_rank(), the communicator returns the

rank of that process. RANK points to a local variable, which is unique for every

calling process because each process has its own separate copy of local variables.

This gives us a way to distinguish different processes while writing all of the source

code for the five processes in a single file.

In more advanced MPI programs, you can create your own communicators,

which means that any process can be part of more than one communicator at any

given time. In this case, the process will likely have a different rank within each

communicator.

Here is the syntax for Get_size() and Get_rank(), where Comm is a communicator

object:

Comm.Get size() Returns the number of processes in the communicator. It will

return the same number to every process. Parameters:

Return value - the number of processes in the communicator

Return type - integer

Example:
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1 #Get_size_example.py

2 from mpi4py import MPI

SIZE = MPI.COMM_WORLD.Get_size()

4 print "The number of processes is {}.".format(SIZE)

Get size example.py

Comm.Get rank() Determines the rank of the calling process in the communi-

cator. Parameters:

Return value - rank of the calling process in the communicator

Return type - integer

Example:

1 #Get_rank_example.py

2 from mpi4py import MPI

RANK = MPI.COMM_WORLD.Get_rank()

4 print "My rank is {}.".format(RANK)

Get rank example.py

Problem 2. Write the “Hello World” program from above so that every

process prints out its rank and the size of the communicator (for example,

process 3 on a communicator of size 5 prints “Hello World from process 3

out of 5!”).

The Communicator

A communicator is a logical unit that defines which processes are allowed to send

and receive messages. In most of our programs we will only deal with the MPI

.COMM_WORLD communicator, which contains all of the running processes. In more

advanced MPI programs, you can create custom communicators to group only a

small subset of the processes together. By organizing processes this way, MPI can

physically rearrange which processes are assigned to which CPUs and optimize your

program for speed. Note that within two different communicators, the same process

will most likely have a different rank.

Note that one of the main differences between mpi4py and MPI in C or Fortran,

besides being array-based, is that mpi4py is largely object oriented. Because of this,

there are some minor changes between the mpi4py implementation of MPI and the

official MPI specification.

For instance, the MPI Communicator in mpi4py is a Python class and MPI

functions like Get_size() or Get_rank() are instance methods of the communicator

class. Throughout these MPI labs, you will see functions like Get_rank() presented

as Comm.Get_rank() where it is implied that Comm is a communicator object.
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Separate Codes in One File

When an MPI program is run, each process receives the same code. However, each

process is assigned a different rank, allowing us to specify separate behaviors for

each process. In the following code, all processes are given the same two numbers.

However, though there is only one file, 3 processes are given completely different

instructions for what to do with them. Process 0 sums them, process 1 multiplies

them, and process 2 takes the maximum of them:

1 #separateCode.py

2 from mpi4py import MPI

RANK = MPI.COMM_WORLD.Get_rank()

4

a = 2

6 b = 3

if RANK == 0:

8 print a + b

elif RANK == 1:

10 print a*b

elif RANK == 2:

12 print max(a, b)

separateCode.py

Problem 3. Write a program in which the the processes with an even rank

print “Hello” and process with an odd rank print “Goodbye.” Print the pro-

cess number along with the “Hello” or “Goodbye” (for example, “Goodbye

from process 3”).

Problem 4. Sometimes the program you write can only run correctly if

it has a certain number of processes. Although you typically want to avoid

writing these kinds of programs, sometimes it is inconvenient or unavoidable.

Write a program that runs only if it has 5 processes. Upon failure, the root

node should print “Error: This program must run with 5 processes” and

upon success the root node should print “Success!” To exit, call the function

COMM.Abort().

As was mentioned the simplest message passing involves two processes: a sender

and a receiver. We will use these methods to parallelize the Trapezoidal Rule.

Simple Message Passing

Let us begin by demonstrating a program designed for two processes. One will draw

a random number and then send it to the other. We will do this using the routines

Comm.Send and Comm.Recv (short for “receive”):

1 #passValue.py
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2 import numpy as np

from mpi4py import MPI

4

6 COMM = MPI.COMM_WORLD

RANK = COMM.Get_rank()

8

if RANK == 1: # This process chooses and sends a random value

10 num_buffer = np.random.rand(1)

print "Process 1: Sending: {} to process 0.".format(num_buffer)

12 COMM.Send(num_buffer, dest=0)

print "Process 1: Message sent."

14 if RANK == 0: # This process recieves a value from process 1

num_buffer = np.zeros(1)

16 print "Process 0: Waiting for the message... current num_buffer={}.".format(←↩
num_buffer)

COMM.Recv(num_buffer, source=1)

18 print "Process 0: Message recieved! num_buffer={}.".format(num_buffer)

passValue.py

To illustrate simple message passing, we have one process choose a random

number and then pass it to the other. Inside the recieving process, we have it print

out the value of the variable num_buffer before it calls Recv to prove that it really is

recieving the variable through the message passing interface.

Here is the syntax for Send and Recv, where Comm is a communicator object:

Comm.Send(buf, dest=0, tag=0) Performs a basic send. This send is a point-

to-point communication. It sends information from exactly one process to

exactly one other process. Parameters:

buf (array-like) data to send.

dest (integer) rank of destination

tag (integer) message tag

Example:

1 #Send_example.py

2 from mpi4py import MPI

import numpy as np

4

RANK = MPI.COMM_WORLD.Get_rank()

6

a = np.zeros(1, dtype=int) # This must be an array

8 if RANK == 0:

a[0] = 10110100

10 MPI.COMM_WORLD.Send(a, dest=1)

elif RANK == 1:

12 MPI.COMM_WORLD.Recv(a, source=0)

print a[0]

Send example.py

Comm.Recv(buf, source=0, tag=0, Status status=None) Basic point-to-point

receive of data. Parameters:
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buf (array-like) initial address of receive buffer (choose receipt location)

source (integer) rank of source

tag (integer) message tag

status (Status) status of object

Example: See example for Send()

Note

Send and Recv are referred to as blocking functions. That is, if a process calls

Recv, it will sit idle until it has received a message from a corresponding Send

before it will proceeed. (However, the process that calls Comm.Send will not nec-

essarily block until the message is recieved- it depends on the implementation)

There are corresponding non-blocking functions Isend and Irecv (The I stands

for immediate). In essence, Irecv will return immediately. If a process calls

Irecv and doesn’t find a message ready to be picked up, it will indicate to the

system that it is expecting a message, proceed beyond the Irecv to do other

useful work, and then check back later to see if the message has arrived. This

can be used to dramatically improve performance.

Note

When calling Comm.Recv, you can allow the calling process to accept a message

from any process that happend to be sending to the receiving process. This is

done by setting source to a predefined MPI constant, source=ANY_SOURCE (note

that you would first need to import this with from mpi4py.MPI import ANY_SOURCE

or use the syntax source=MPI.ANY_SOURCE).

Problem 5. Write a Python script passVector.py (adapted from passValue.py)

that passes an n by 1 vector of random values from one process to the other.

Write it so that the user passes the value of n in as a command-line argument

(similar to the code developed later in this lab for the trapezoidal rule).

Problem 6. Try modifying some of the parameters in Send and Recv in the

code from the previous exercise (dest, source, and tag). What happens to the

program? Does it hang or crash? What do you suppose the tag parameter

does?
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Problem 7. Write a Python script passCircular.py (again adapted from

passValue.py). This time, write the program so that each process with rank

i sends a random value to the process with rank i+ 1 in the global commu-

nicator. The process with the highest rank will send its random value to the

root process. Notice that we are communicating in a ring. For communica-

tion, only use Send and Recv. The program should work for any number of

processes. (Hint: Remember that Send and Recv are blocking functions. Does

the order in which Send and Recv are called matter?)

The Trapezoidal Rule

Now that we understand basic communication in MPI, we will proceed by paralleliz-

ing our first algorithm–numerical integration using the “trapezoidal rule.” Early on

in most calculus classes, students learn to estimate integrals using the trapezoidal

rule. A range to be integrated is divided into many vertical slivers, and each sliver

is approximated with a trapezoid. The area of each trapezoid is computed, and

then all their areas are added together.

Area ≈
n−1∑
i=0

[f(a+ i∆x) + f(a+ (i+ 1)∆x)]

2
·∆x

=

[
−f(a) + f(b)

2
+

n∑
i=0

f(a+ i∆x)

]
·∆x

where ∆x = (b− a)/n.

Figure 13.1: The trapezoid rule in action. TODO get a copyright-kosher version.

In Python, a simple serial formulation of the trapezoidal rule would be as follows:

1 """ trapSerial.py

2 Example usage:

$ python trapSerial.py 0.0 1.0 10000
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4 With 10000 trapezoids, the estimate of the integral of x^2 from 0.0 to ←↩
1.0 is:

0.333333335

6 """

8 from __future__ import division

from sys import argv

10 import numpy as np

12

def integrate_range(fxn, a, b, n):

14 ''' Numerically integrates the function fxn by the trapezoid rule

Integrates from a to b with n trapezoids

16 '''

# There are n trapezoids and therefore there are n+1 endpoints

18 endpoints = np.linspace(a, b, n+1)

20 integral = sum(fxn(x) for x in endpoints)

integral -= (fxn(a) + fxn(b))/2

22 integral *= (b - a)/n

24 return integral

26 # An arbitrary test function to integrate

def function(x):

28 return x**2

30 # Read the command line arguments

a = float(argv[1])

32 b = float(argv[2])

n = int(argv[3])

34

result = integrate_range(function, a, b, n)

36 print "With {0} trapezoids, the estimate of the integral of x^2 from {1} to {2} ←↩
is: \n\t{3}".format(n, a, b, result)

trapSerial.py

A moment of thought should convince the reader that this algorithm reflects the

formula given above.

Parallelizing the Trapezoidal Rule

The first and most important step in parallelizing an algorithm is determining which

computations are independent. With the trapezoidal rule, it’s easy to see that the

area of each trapezoid can be calculated independently, so dividing the data at the

trapezoid level seems natural.

Currently, the algorithm divides up the interval into n subintervals. To paral-

lelize this process, we will distribute these n subintervals to the available processes:

1 """ trapParallel_1.py

2 Example usage:

$ mpirun -n 10 python.exe trapParallel_1.py 0.0 1.0 10000

4 With 10000 trapezoids, the estimate of the integral of x^2 from 0.0 to ←↩
1.0 is:

0.333333335

6 ***In this implementation, n must be divisble by the number of processes***
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"""

8

from __future__ import division

10 from sys import argv

from mpi4py import MPI

12 import numpy as np

14

COMM = MPI.COMM_WORLD

16 SIZE = COMM.Get_size()

RANK = COMM.Get_rank()

18

def integrate_range(fxn, a, b, n):

20 ''' Numerically integrates the function fxn by the trapezoid rule

Integrates from a to b with n trapezoids

22 '''

# There are n trapezoids and therefore there are n+1 endpoints

24 endpoints = np.linspace(a, b, n+1)

26 integral = sum(fxn(x) for x in endpoints)

integral -= (fxn(a) + fxn(b))/2

28 integral *= (b - a)/n

30 return integral

32 # An arbitrary test function to integrate

def function(x):

34 return x**2

36 # Read the command line arguments

a = float(argv[1])

38 b = float(argv[2])

n = int(argv[3])

40

42 step_size = (b - a)/n

# local_n is the number of trapezoids each process will calculate

44 # ***Remember, in this implementation, n must be divisible by SIZE***

local_n = n / SIZE

46

# local_a and local_b are the start and end of this process' integration range

48 local_a = a + RANK*local_n*step_size

local_b = local_a + local_n*step_size

50

# mpi4py requires these to be numpy objects:

52 integral = np.zeros(1)

integral[0] = integrate_range(function, local_a, local_b, local_n)

54

56 if RANK != 0:

# Send the result to the root node; the destination parameter defaults to 0

58 COMM.Send(integral)

else:

60 # The root node now compiles and prints the results

total = integral[0]

62 communication_buffer = np.zeros(1)

for _ in xrange(SIZE-1):

64 COMM.Recv(communication_buffer, MPI.ANY_SOURCE)

total += communication_buffer[0]

66
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print "With {0} trapezoids, the estimate of the integral of x^2 from {1} to ←↩
{2} is: \n\t{3}".format(n, a, b, total)

trapParallel 1.py

In this parallel approach, the original interval is split such that each process

gets an equal-sized subinterval to integrate. After integrating, each process sends

its result to the root node, which sums up the results and displays them. Although

this is fairly straightforward, there are two important things to note:

First, notice how the trapezoids are divided among the processes: The processors

each individually calculate the specifics of which subinterval they will be integrating.

We could have written the algorithm such that process 0 divides up the work for the

other processors and tells them each what their ranges are. However, this would

introduce an unnecessary bottleneck: all of the other processes would be idling

while waiting for their assignment to arrive from the root process. By having each

process calculate its own range, we gain a large speedup.

Second, notice how the results are summed. We know how many results we

should be receiving, so the root process simply accepts the messages in the order

that they arrive. This is achieved using the tag MPI.ANY_SOURCE in the COMM.Recv

method. In following labs we will learn about even more effective ways to gather

the results of many different processes’ computations.

At this point, you should test the code for yourself. Save the code in a file named

trapParallel 1.py and try running it from the command line using the following

input:

$ mpirun -n 4 python trapParallel_1.py 0.0 1.0 10000

The output should appear like this:

With 10000 trapezoids, our estimate of the integral of x^2 from 0.0 to 1.0 is:

0.333333335

We have successfully parallelized our first algorithm!

Load Balancing

Although we have parallelized the trapezoidal rule, our algorithm is still rather

naive. Notice that if the number of processes does not evenly divide the number of

trapezoids, the code will break down. Try running the trapezoid program with n =

10007 trapezoids:

$ mpirun -n 4 python trapParallel_1.py 0.0 1.0 10007

This will produce the following:

With 10007 trapezoids, our estimate of the integral of x^2 from 0.0 to 1.0 is:

0.333233404949

We know that the estimate of the integral should improve as n grows larger,

but this estimate is much worse. This happened because local_n, the number of
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trapezoids that each processor calculates, must be an integer. To solve this problem,

we could require that the user always choose a value of n that is divisible by the

number of processors. However, good parallel code should let the user worry as

little as possible about the parallelization and should function exactly as the serial

version does. Thus, we should improve the code to let it handle the case where n

is not divisible by the number of processes.

One way to solve this problem would be to designate one process to handle the

leftover trapezoids that; i.e. give each process int(n/SIZE) trapezoids and assign the

remaining n % SIZE trapezoids to the last process as well. Thus, the local_n of each

process would be an integer. However, this method can be incredibly inefficient:

What if we ran the program with 100 processes and n = 1099 trapezoids? Then

each process would have int(1099/100) = 10 trapezoids to calculate... except for the

last process, which would have 10 + 1099 % 100 = 109 trapezoids!

A parallel program can only be as fast as its slowest process. We call this principle

load balancing. In this case, one process has to do over ten times as much work

as the other processes! The other processes will end up waiting idle until the last

one finishes. Ignoring communication costs and other overhead, this program could

be nearly 10 times faster if we divided up the work more evenly. The important

concept to remember is that any time a process is idling, we are losing efficiency.

In the case of the trapezoidal rule, load-balancing the code means two things.

First, between any two processes, the number of trapezoids given to each must

differ by at most 1. Second, each process should estimate the area of a contiguous

group of trapezoids. Although estimating an integral is not a very time-consuming

operation, by estimating over contiguous groups of trapezoids we are minimizing

the amount of duplicate work the processes have to do, which is good practice.

Problem 8. Implement the load-balancing fix to the code trapParallel 1.py.

The program should be able to take in any number of trapezoids n for any

number of processes and the trapezoids should be divided among the pro-

cesses evenly, differing by at most one between any two processes. Each

process should independently calculate which section of trapezoids it should

calculate.

For example, if the program is run with 5 processes and 12 trapezoids,

processes 0 should calculate the first 3 trapezoids, process 1 should calculate

the next 3 trapezoids, process 2 should calculate the next 2 trapezoids, pro-

cess 3 should calculate the next 2 trapezoids, and process 4 should calculate

the last 2 trapezoids.
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