
Lab 14

Collective Communication

Lab Objective: Learn how to use collective communication to increase the effi-

ciency of parallel programs

In the lab on the Trapezoidal Rule [Lab ??], we worked to increase the efficiency

of the trapezoidal rule by parallelizing the code and by load-balancing the parallel

processes. However, the algorithm is still far from being optimized.

Look back at the summation that the root process (process 0) does. After

each process independently calculates its estimate, the results must be compiled

somehow, and the method we have chosen is rather inefficient. While the root

process sums the data, the other processors sit idly. A more efficient algorithm

would balance the work-load so that there are non-idling processes. Additionally,

the root process is solely responsible for communicating with each of the other

processes. The communication involved in parallel programs is usually a substantial

bottleneck, and this is no exception.

Both of these problems can be somewhat corrected through what is called “Col-

lective Communication.” Besides helping to alleviate load imbalances, however, col-

lective communication has a more important purpose: it helps to optimize message

passing among separate processes. Communication among processes is expensive.

Because each message must be sent over some sort of network, we must minimize

and optimize this inter-process communication.

There are two important principles to remember here:

Load Balancing: A program is inefficient if it is not using all of the available re-

sources (e.g., processes are idling because they are waiting for each other)

Communication is Expensive: Broadcast and Reduce (two MPI functions we will in-

troduce in this lab) are designed to optimize communication among the whole

communicator. However, any sort of message passing is extremely expensive

and one of the main obstacles to obtaining speedups when parallelizing an

algorithm.

139

140 Lab 14. Collective Communication in Parallel Programs

Figure 14.1: Tree structure in fast summation.

Tree-Structured Computation

Suppose we have eight processes, each with a number to be summed. Let the even

ranked processes send their data to the odd process one greater than each respective

process. The odd processes receive data from directly below them in rank. By so

doing, we have in one time-step done half of the work.

From this point we can repeat the process with the odd processes, further par-

titioning them. A summation done in this manner creates a tree structure (see the

figure [14.1]). MPI has implemented fast summations and much more in methods

referred to as “Collective Communication.” The method shown in the figure is

called Reduce.

Furthermore, MPI has methods that can also distribute information in efficient

ways. Imagine reversing the arrows in the figure [14.1]. This is MPI’s Broadcast

function. We should note, though, that the image is a simplification of how MPI

performs collective communication. In practice, it is different in every implemen-

tation, and is usually more efficient than the simplified example shown. MPI is

designed to optimize these methods under the hood, and so we only need to worry

about properly applying these functions.

Knowing this, let’s take another look at the trapezoidal rule.

The Parallel Trapezoidal Rule 2.0

Below is the code for our revised edition of the trapezoid rule. (This code requires

that the number of trapezoids is evenly divisible by the the number of processes).

The main change is that the statement comm.Reduce(integral, total) has replaced the

entire if-else statement that was used to compile the results, including the for loop.

Not only does the code look cleaner, it runs faster.

1 """ trapParallel_2.py

2 Example usage:

$ mpirun -n 10 python.exe trapParallel_2.py 0.0 1.0 10000

4 With 10000 trapezoids, the estimate of the integral of x^2 from 0.0 to ←↩
1.0 is:

141

0.333333335

6 ***In this implementation, n must be divisble by the number of processes***

"""

8

from __future__ import division

10 from sys import argv

from mpi4py import MPI

12 import numpy as np

14

COMM = MPI.COMM_WORLD

16 SIZE = COMM.Get_size()

RANK = COMM.Get_rank()

18

def integrate_range(fxn, a, b, n):

20 ''' Numerically integrates the function fxn by the trapezoid rule

Integrates from a to b with n trapezoids

22 '''

There are n trapezoids and therefore there are n+1 endpoints

24 endpoints = np.linspace(a, b, n+1)

26 integral = sum(fxn(x) for x in endpoints)

integral -= (fxn(a) + fxn(b))/2

28 integral *= (b - a)/n

30 return integral

32 # An arbitrary test function to integrate

def function(x):

34 return x**2

36 # Read the command line arguments

a = float(argv[1])

38 b = float(argv[2])

n = int(argv[3])

40

42 step_size = (b - a)/n

local_n is the number of trapezoids each process will calculate

44 # ***Remember, in this implementation, n must be divisible by SIZE***

local_n = n / SIZE

46

local_a and local_b are the start and end of this process' integration range

48 local_a = a + RANK*local_n*step_size

local_b = local_a + local_n*step_size

50

mpi4py requires these to be numpy objects:

52 integral = np.zeros(1)

integral[0] = integrate_range(function, local_a, local_b, local_n)

54

56

This has been the same as trapParallel_1.py up until this line. The rest is new←↩
:

58

60 total_buffer = np.zeros(1)

62 # The root node receives results with a collective "reduce"

COMM.Reduce(integral, total_buffer, op=MPI.SUM, root=0)

142 Lab 14. Collective Communication in Parallel Programs

64

total = total_buffer[0]

66

Now the root process prints the results:

68 if RANK == 0:

print "With {0} trapezoids, the estimate of the integral of x^2 from {1} to ←↩
{2} is: \n\t{3}".format(n, a, b, total)

trapParallel 2.py

Some explanation is necessary for the call to COMM.Reduce. The first argument,

integral, is the number which is going to be added up. This number is different

for every process. The variable total_buffer will hold the result in the root process

after this line runs. The parameter op=MPI.SUM tells the communicator to use the

addition operator to combine the values.

The careful observer may have noticed from the figure 14.1 that in the end of

the call to Reduce, only the root process holds the final summation. This brings up

an important point: collective communication calls can return different values to

each process. This can be a “gotcha” if you are not paying attention.

So what can we do if we want the result of a summation to be available to all

processes? Use the provided subroutine AllReduce. It does the same thing as Reduce,

but it simultaneously uses each process as the root. That way, by the end of the

summation, each process has calculated an identical sum. Duplicate work was done,

but in the end, the result ends up on each process at the same time.

So when should we use Reduce and when should we use AllReduce? If it is unim-

portant for all processes to have the result, as is the case with the Trapezoidal Rule,

using Reduce should be slightly faster than using AllReduce. On the other hand, if

every process needs the information, AllReduce is the fastest way to go. We could

come up with some other solutions to the situation, such as a call to Reduce, followed

by a call to Broadcast, however these other solutions are always less efficient than

just using one call to the collective communication routines. In the end, the less

communications, the better.

Reduce(...) and Allreduce(...)

Comm.Reduce(sendbuf, recvbuf, Op op=MPI.SUM, root=0) Reduces val-

ues on all processes to a single value on the root process. Parameters:

sendbuf (array-like) address of send buffer

recvbuf (array-like) address of recieve buffer (only significant in root pro-

cess)

op (MPI Op) reduce operation

root (int) rank of root of operation

Example:

1 #Reduce_example.py

2 from mpi4py import MPI

import numpy as np

4

143

COMM = MPI.COMM_WORLD

6 RANK = COMM.Get_rank()

operand_buffer = np.array(float(RANK))

8 SIZE_buffer = np.zeros(1)

10 COMM.Reduce(operand_buffer, SIZE_buffer, op=MPI.MAX)

if RANK == 0:

12 SIZE = 1 + int(SIZE_buffer[0])

print "The size is {}.".format(SIZE)

Reduce example.py

Comm.Allreduce(sendbuf, recvbuf, Op op=MPI.SUM) Reduces values on

all processes to a single value on all processes. Parameters:

sendbuf (array-like) address of send buffer

recvbuf (array-like) address of recieve buffer (only significant in root pro-

cess)

op (MPI Op) reduce operation

Example: Same as the example for Reduce except replace COMM.Reduce

with COMM.Allreduce and remove the if statement. Notice that all process

now have the reduced value.

The following table contains the predefined operations that can be used for the

input parameters Op. There are also methods that allow the creation of user-defined

operations. Full documentation is found here: http://mpi4py.scipy.org/docs/

apiref/mpi4py.MPI.Op-class.html.

TODO figure out how to format this table

Problem 1. What is the difference between Reduce and Allreduce?

Problem 2. Why is Allreduce faster than a Reduce followed by a Bcast?

Parallelizing the Dot Product

Calculating a dot product is a relatively simple task which does not need to be

parallelized, but it makes a good example for introducing the other important col-

lective communication subroutines. When provided two vectors, the dot product is

the sum of the element wise multiplications of the two vectors:

u · v =

n∑
i=1

uivi

In order to parallelize this, we can divide up the work among different processors

by sending pieces of the original vectors to different processors. Each processor then

144 Lab 14. Collective Communication in Parallel Programs

multiplies its elements and sums them. Finally, the local sums are summed using

Reduce, which sums numbers distributed among many processes in O(log n) time.

The code looks like this:

1 '''

2 Takes a dot product in parallel.

Example usage:

4 $ mpirun -n 4 python.exe dot.py 1000

Assumes n is divisible by SIZE

6

command line arguments: n, the length of the vector to dot with itself

8 '''

10 from mpi4py import MPI

import numpy as np

12 from sys import argv

14

COMM = MPI.COMM_WORLD

16 RANK = COMM.Get_rank()

SIZE = COMM.Get_size()

18

ROOT = 0

20

n = int(argv[1])

22

24 if RANK == ROOT:

x = np.linspace(0, 100, n)

26 y = np.linspace(20, 300, n)

else:

28 x, y = None, None

30 # Prepare variables

local_n = n // SIZE

32 if n % SIZE != 0:

print "The number of processors must evenly divide n."

34 COMM.Abort()

36 local_x = np.zeros(local_n)

local_y = np.zeros(local_n)

38

COMM.Scatter(x, local_x)

40 COMM.Scatter(y, local_y)

42 local_dot_product = np.dot(local_x, local_y)

buf = np.array(local_dot_product)

44

result_buf = np.zeros(1) if RANK == ROOT else None

46 COMM.Reduce(buf, result_buf, MPI.SUM)

48 if RANK == ROOT:

print "Parallel Dot Product: ", str(result_buf[0])

50 print "Serial Dot Product: ", str(np.dot(x, y))

dot.py

The actual distributing of the data occurs with the calls to Scatter. Scatter takes

an array, divides it up, and distributes one piece to each process. Afterward, the

145

serial dot product (using np.dot) is run to calculate a local dot product within each

process. Finally, Reduce is called to collect the results into the root process.

With this new algorithm and enough processors, the runtime approaches O(log

n) time. To help understand how much faster this is compared to the original

version, imagine that we have as many processors as we have items in each array:

say, 1000. Then, each of these operations requires the same amount of time, the

algorithm’s runtime would run hypothetically something like this:

TODO figure out how to format this table

The first column shows the serial dot product’s time requirements. The final

column shows the mpi-version. It is clear that the final version requires less time

and that this number drops with the number of processors used. We simply cannot

get this speed up unless we break out of the serial paradigm.

The middle column illustrates why we should use broadcast, and scatter, and

reduce over using n send/recv pairs in a for-loop. We do not include code for this

variation. It turns out that using MPI in this fashion can actually run slower than

the serial implementation of our dot product program.

A Closer Look at Broadcast and Reduce

Let’s take a closer look at the call to COMM.Bcast. Bcast sends data from one process

to all others. It uses the same tree-structured communication illustrated in the Fast

Sum figure [14.1]. It takes for its first argument an array of data, which must exist

on all processors. However, what is contained in that array may be insignificant.

The second argument tells Bcast which process has the useful information. It then

proceeds to overwrite any data in the arrays of all other processes.

Bcast behaves as if it is synchronous. “Synchronous” means that all processes are

in sync with each other, as if being controlled by a global clock tick. For example,

if all processes make a call to Bcast they will all be guaranteed to be calling the

subroutine at basically the same time.

For all practical purposes, you can also think of Reduce as being synchronous.

The difference is that Reduce only has one receiving process, and that process is the

only process whose data is guaranteed to contain the correct value at completion of

the call. To test your understanding of Reduce, suppose we are adding the number

one up by calling COMM.Reduce on 100 processes, with the root being process 0. The

documentation of COMM.Reduce tells us that the receive buffer of process 0 will contain

the number 100. What will be in the receive buffer of process 1?

The answer is we don’t know. The reduce could be implemented in one of several

ways, dependent on several factors, and as a result it is non-deterministic. During

collective communications such as Reduce, we have no guarantee of what value will be

in the intermediate processes’ receive buffer. More importantly, future calculations

should never rely on this data except in process root (process 0 in our case).

Problem 3. In our parallel implementation of the calculation of the dot

product, dotProductParallel 1.py, the number of processes must evenly

divide the length of the vectors. Rewrite the code so that it runs regardless

146 Lab 14. Collective Communication in Parallel Programs

of vector length and number of processes (though for convenience, you may

assume that the vector length is greater than the number of processes).

Remember the principle of load balancing. Use Scatterv() to accomplish

this.

Problem 4. Alter your code from the previous exercise so that it calculates

the supremum norm(the maximal element) of one of the vectors (choose any

one). This will include changing the operator Op in the call to Reduce.

Problem 5. Use Scatter to parallelize the multiplication of a matrix and

a vector. There are two ways that this can be accomplished. Both use

Scatter to distribute the matrix, but one uses Bcast to distribute the vector

and Gather to finish while the other uses Scatter to segment the vector and

finishes with Reduce. Outline how each would be done. Discuss which would

be more efficient (hint: think about memory usage). Then, write the code

for the better one. Generate an arbitrary matrix on the root node. You

may assume that the number of processes is equal to the number of rows

(columns) of a square matrix. Example code demonstrating scattering a

matrix is shown below:

1 #matrix_scatter_example

2 from mpi4py import MPI

import numpy as np

4

COMM = MPI.COMM_WORLD

6 RANK = COMM.Get_rank()

A = np.array([[1.,2.,3.],[4.,5.,6.],[7.,8.,9.]])

8 local_a = np.zeros(3)

COMM.Scatter(A, local_a)

10 print "Process {0} has {1}.".format(RANK, local_a)

matrix scatter example.py

