
Lab 1

Gaussian Mixture Models

Lab Objective: Understand the formulation of Gaussian Mixture Models (GMMs)

and how to estimate GMM parameters.

You’ve already seen GMMs as the observation distribution in certain continuous

density HMMs. Here, we will discuss them further and learn how to estimate their

parameters, given data.

The main idea behind a mixture model is contained in the name, i.e. it is a

mixture of different models. What do we mean by a mixture? A mixture model is

composed of K components, each component being responsible for a portion of the

data. The responsibilities of these components are represented by mixture weights

wi, for i = 1, · · · , k. As you may have guessed, these weights are nonnegative and

sum to 1. Thus component j is responsible for 100 ·wj percent of the data generated

by the model.

Each component is itself a probability distribution. In a GMM, each component

is specifically a Gaussian (multivariate normal) distribution. Thus we addition-

ally have parameters µi,Σi for i = 1, · · · ,K, i.e. a mean and covariance for each

component in the GMM. It is important here to keep in mind that a GMM does

not arise from adding weighted multivariate normal random variables, but rather

from weighting the responsibility of each multivariate normal random variable. In

the first case, we would simply have a different multivariate normal distribution,

whereas in the second case we have a mixture. Refer to Figure ?? for a visualization

of this.

Thus, a fully defined GMM has parameters λ = (w, µ,Σ) . The density of a

GMM is given by P(x|λ) =
∑K
i=1 wiN (x;µi,Σi) where

N (x;µi,Σi) =
1

(2π)
K
2 |Σi|

1
2

e−
1
2 (x−µi)

T Σ−1
i (x−µi)

Problem 1. Write a function to evaluate the density of a normal distribu-

tion at a point x, given parameters µ and Σ. Include the option to return the

log of this probability, but be sure to do it intelligently! Also write a function

1

2 Lab 1. Gaussian Mixture Models

(a) Sum of weighted multivariate normal

random variables.

(b) Weighted mixture of multivariate normal

random variables.

that computes the density of a GMM at a point x, given the parameters λ,

along with the log option.

Throughout this lab, we will build a GMM class with various methods. We will

outline this now.

Problem 2. Write the skeleton of a GMM class. In the __init__ method, it

should accept the non-null parameter n components, as well as parameters

for the weights, means, and covariance matrices which define the GMM.

Include a function to generate data from a fully defined GMM (you may use

your code from the CDHMM lab for this), as well as the density function

you recently defined.

The main focus of this lab will be to estimate the parameters of a GMM, given

observed multivariate data Y = y1, y2, · · · , yT . This can be done via Gibbs sam-

pling, as well as with EM (Expectation Maximization). We choose the latter ap-

proach for this lab. To do this, we must compute the probability of an observation

being from each component of a GMM with parameters λ(n) =
(
w(n), µ(n),Σ(n)

)
.

This is simply

P(xt = i|yt, λ) ∝ w(n)
i N (yt;µ

(n)
i ,Σ

(n)
i)

Just as with HMMs, we refer to these probabilities as γt(i), and this is the E -step

in the algorithm. This might seem straightforward, except this direct computation

will likely lead to numerical issues. Instead, we work in the log space, which means

we have to be a bit more careful.

It is feasible (and occurs quite often) that each term w
(n)
i N (yt;µ

(n)
i ,Σ

(n)
i) is

0, because of underflow in the computation of the multivariate normal density.

Letting l
(n)
i = lnw

(n)
i + lnN (yt;µ

(n)
i ,Σ

(n)
i), we can compute these probabilities

3

more carefully, as follows:

P(xt = i|yt, λ) =
eli∑K
j=1 e

lj

=
elie−maxk lk∑K
j=1 e

lje−maxk lk

=
eli−maxk lk∑K
j=1 e

lj−maxk lk

which will effectively avoid underflow problems.

Problem 3. Add a method to your class to compute γt(i) for t = 1, · · · , T
and i = 1, · · · ,K. Don’t forget to do this intelligently to avoid underflow!

Given our matrix γ, we can reestimate our weights, means, and covariance ma-

trices as follows:

w
(n+1)
i =

T∑
t=1

γt(i)

µ
(n+1)
i =

∑T
t=1 γt(i)yt∑T
t=1 γt(i)

Σ
(n+1)
i =

∑T
t=1 γt(i)(yt − µ

(n+1)
i)(yt − µ(n+1)

i)T∑T
t=1 γt(i)

for i = 1, · · · ,K. These updates are the M -step in the algorithm.

Problem 4. Add methods to your class to update w, µ and Σ as described

above.

With the above work, we are almost ready to complete our class. To train,

we will randomly initialize our parameters λ, and then iteratively update them as

above.

Problem 5. Add a method to initialize λ. Do this intelligently, i.e. your

means should not be far from your actual data used for training, and your

covariances should neither be too big nor too small. Your weights should

roughly be equal, and still sum to 1. Also add a method to train your model,

as described previously, iterating until convergence within some tolerance.

4 Lab 1. Gaussian Mixture Models

We will use our work to train the “Mickey Mouse” GMM, which has parameters

w =
[

0.7 0.15 0.15
]

µ1 =
[

0.0 0.0
]

µ2 =
[
−1.5 2.0

]
µ3 =

[
1.5 2.0

]
Σ1 = I3

Σ2 = 0.25 · I3
Σ3 = 0.25 · I3

To look at this GMM, we will evaluate the density at each point on a grid, as

follows:

>>> import matplotlib.pyplot as plt

>>> x = np.arange(-3, 3, 0.1)

>>> y = np.arange(-2, 3, 0.1)

>>> X, Y = np.meshgrid(x, y)

>>> N, M = X.shape

>>> immat = np.array([[model.dgmm(np.array([X[i,j],Y[i,j]])) for j in xrange(M)] ←↩
for i in xrange(N)])

>>> plt.imshow(immat, origin='lower')
>>> plt.show()

See Figure 1.2 for this plot.

Problem 6. Generate 750 samples from the above mixture model. Using

just the drawn samples, retrain your model. Evaluate and plot your density

on the grid used above. How similar is your density to the original?

How close is our trained model to the original one? We can use the symmet-

ric Kullback-Liebler divergence to measure the distance between two probability

distributions with densities p(x) and p′(x):

SKL(p, p′) =

∣∣∣∣12
∫
p(x) ln

p(x)

p′(x)
dx+

1

2

∫
p′(x) ln

p′(x)

p(x)
dx

∣∣∣∣
We cannot analytically compute this, so we use a Monte Carlo approximation,

which uses the fact that

1

N

N∑
i=1

f(xi)→
∫
f(x)p(x)dx

as N →∞, assuming that each xi ∼ p. Then we have the following approximation

of the symmetric KL divergence:

SKL(p, p′) ≈ 1

2N

∣∣∣∣∣
N∑
i=1

ln
p(xi)

p′(xi)
+

N∑
i=1

ln
p′(x′i)

p(x′i)

∣∣∣∣∣
where xi ∼ p and x′i ∼ p′, for large N .

5

Figure 1.2: Density of true “Mickey Mouse” GMM.

Problem 7. Write a function to compute the approximate the SKL of two

GMMs. Compute the SKL between a randomly initialized GMM and the

known GMM. Compute the SKL between the trained GMM and the known

GMM. Is our trained model a good fit?

	Gaussian Mixture Models

