Lab 2

A Pseudospectral method
for periodic functions

Lab Objective: We look at a pseudospectral method with a Fourier basis, and
numerically solve the advection equation using a pseudospectral discretization in
space and a Runge-Kutta integration scheme in time.

Let f be a periodic function on [0,27]. Let x1,...,2x5 be N evenly spaced grid
points on [0, 27]. Since f is periodic on [0, 27], we can ignore the grid point z¢ = 0.
We will further assume that N is even; similar formulas can be derived for N odd.
Let h = 27 /N; then {z1,...,xzn} ={h,2h,...,27 — h,27}.

The discrete Fourier transform (DFT) of f, denoted by forF (f), is given by

N
flk)y=h> e ™ if(z;) where k=-N/2+1,...,0,1,...,N/2.
j=1

The inverse DFT is then given by

N/2

where
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1 otherwise.

The inverse DFT can then be used to define a natural interpolant (sometimes called
a band-limited interpolant) by evaluating (2.1) at any « rather than z;:

L N
_ ikx
pla)=o- >, e f(k). (2.3)
k=—N/2
The interpolant for f’ is then given by
L N2
p(z) = zkﬂ Z e f (k). (2.4)
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Consider the function u(x) = sin?(z) cos(x) 4 €5+ Using (2.4), the deriva-
tive «/ may be approximated with the following code. * We note that although we
only approximate u’ at the Fourier grid points, (2.4) provides an analytic approxi-
mation of ' in the form of a trigonometric polynomial.

import numpy as np
from scipy.fftpack import fft, ifft
import matplotlib.pyplot as plt

N=24
x1 = (2.*np.pi/N)*np.arange(1,N+1)
f = np.sin(x1)**2.*np.cos(x1) + np.exp(2.*np.sin(x1+1))

k = np.concatenate(( np.arange(0,N/2) ,
np.array([0]) , # Because hat{f}'(k) at k = N/2 is zero.
np.arange (-N/2+1,0,1) ))

# Approximates the derivative using the pseudospectral method
f_hat = fft(f)

fp_hat = ((1j*k)*f_hat)

fp = np.real (ifft(fp_hat))

# Calculates the derivative analytically

x2 = np.linspace(0,2*np.pi,200)

derivative = (2.#*np.sin(x2)#*np.cos(x2)**2. -
np.sin(x2)**3. +
2*np. cos (x2+1) *np.exp(2*np.sin(x2+1))
)

plt.plot(x2,derivative, '-k',linewidth=2.)
plt.plot(xl,fp, '*b')
plt.savefig('spectral2_derivative.pdf')
plt.show()

Problem 1. Consider again the function u(z) = sin?(z) cos(x) + e2sn(@+1),
Create a function that approximates %u” — ' on the Fourier grid points for
a given N.

The advection equation

Recall that the advection equation is given by
ug + cuy =0 (2.5)

where ¢ is the speed of the wave (the wave travels to the right for ¢ > 0). We
will consider the solution of the advection equation on the circle; this essentially
amounts to solving the advection equation on [0, 27] and assuming periodic bound-
ary conditions.

LSee Spectral Methods in MATLAB by Lloyd N. Trefethen. Another good reference is Cheby-
shev and Fourier Spectral Methods by John P. Boyd.
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Figure 2.1: The derivative of u(z) = sin?(z) cos(z) + e?sin(@+1),

A common method for solving time-dependent PDEs is called the method of
lines. To apply the method of lines to our problem, we use our Fourier grid points in
[0, 7]: given an even N, let h = 27 /N, so that {z1,...,xnx} = {h,2h,...,27—h,27}.
By using these grid points we obtain the collection of equations

ur(zj,t) + cug(z;,t) =0, t>0, j=1,...N. (2.6)

Let U(t) be the vector valued function given by U(t) = (u(x;,t))iL,. Let
F(U)(t) denote the discrete Fourier transform of u(z,t) (in space), so that

Define F~! similarly. Using the pseudospectral approximation in space leads to the
system of ODEs

Uy +cF? (iEf(U)) =0 (2.7)

where k is a vector, and kF (U) denotes element-wise multiplication. Similarly ¢
could also be a vector, if the wave speed c is allowed to vary.

Problem 2. Using a fourth order Runge-Kutta method (RK4), solve the
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Figure 2.2: The solution of the variable speed advection equation; see Problem 2.

initial value problem
uy + c(z)uy =0, (2.8)

where ¢(z) = 2 4 sin?(z — 1), and u(z,t = 0) = ¢ 199E=D* Plot your
numerical solution from ¢ = 0 to ¢t = 8. Note that the initial data is nearly
zero near x = 0 and 27, and so we can use the pseudospectral method.

%This problem is solved in Spectral Methods in MATLAB using a leapfrog discretization
in time.
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