Lab 2

A Pseudospectral method for periodic functions

Lab Objective: We look at a pseudospectral method with a Fourier basis, and numerically solve the advection equation using a pseudospectral discretization in space and a Runge-Kutta integration scheme in time.

Let f be a periodic function on $[0,2 \pi]$. Let x_{1}, \ldots, x_{N} be N evenly spaced grid points on $[0,2 \pi]$. Since f is periodic on $[0,2 \pi]$, we can ignore the grid point $x_{0}=0$. We will further assume that N is even; similar formulas can be derived for N odd. Let $h=2 \pi / N$; then $\left\{x_{1}, \ldots, x_{N}\right\}=\{h, 2 h, \ldots, 2 \pi-h, 2 \pi\}$.

The discrete Fourier transform (DFT) of f, denoted by \hat{f} or $\mathcal{F}(f)$, is given by

$$
\hat{f}(k)=h \sum_{j=1}^{N} e^{-i k x_{j}} f\left(x_{j}\right) \quad \text { where } k=-N / 2+1, \ldots, 0,1, \ldots, N / 2
$$

The inverse DFT is then given by

$$
\begin{equation*}
f\left(x_{j}\right)=\frac{1}{2 \pi} \sum_{k=-N / 2}^{N / 2} \frac{e^{i k x_{j}}}{c_{k}} \hat{f}(k), \quad j=1, \ldots, N \tag{2.1}
\end{equation*}
$$

where

$$
c_{k}= \begin{cases}2 & \text { if } k=-N / 2 \text { or } k=N / 2 \tag{2.2}\\ 1 & \text { otherwise }\end{cases}
$$

The inverse DFT can then be used to define a natural interpolant (sometimes called a band-limited interpolant) by evaluating (2.1) at any x rather than x_{j} :

$$
\begin{equation*}
p(x)=\frac{1}{2 \pi} \sum_{k=-N / 2}^{N / 2} e^{i k x} \hat{f}(k) \tag{2.3}
\end{equation*}
$$

The interpolant for f^{\prime} is then given by

$$
\begin{equation*}
p^{\prime}(x)=i k \frac{1}{2 \pi} \sum_{k=-N / 2+1}^{N / 2-1} e^{i k x} \hat{f}(k) \tag{2.4}
\end{equation*}
$$

Consider the function $u(x)=\sin ^{2}(x) \cos (x)+e^{2 \sin (x+1)}$. Using (2.4), the derivative u^{\prime} may be approximated with the following code. ${ }^{1}$ We note that although we only approximate u^{\prime} at the Fourier grid points, (2.4) provides an analytic approximation of u^{\prime} in the form of a trigonometric polynomial.

```
import numpy as np
from scipy.fftpack import fft, ifft
import matplotlib.pyplot as plt
N=24
x1 = (2.*np.pi/N)*np.arange(1,N+1)
f = np.sin(x1)**2.*np.cos(x1) + np.exp(2.*np.sin(x1+1))
k = np.concatenate(( np.arange(0,N/2) ,
    np.array([0]) , # Because hat{f}'(k) at k = N/2 is zero.
    np.arange(-N/2+1,0,1) ))
# Approximates the derivative using the pseudospectral method
f_hat = fft(f)
fp_hat = ((1j*k)*f_hat)
fp = np.real(ifft(fp_hat))
# Calculates the derivative analytically
x2 = np.linspace(0,2*np.pi,200)
derivative = (2.*np.\operatorname{sin}(\textrm{x}2)*\textrm{np}.\operatorname{cos}(\textrm{x}2)**2. -
    np.sin(x2)**3. +
    2*np.cos(x2+1)*np.exp(2*np.sin(x2+1))
    )
plt.plot(x2,derivative,'-k',linewidth=2.)
plt.plot(x1,fp,'*b')
plt.savefig('spectral2_derivative.pdf')
plt.show()
```

Problem 1. Consider again the function $u(x)=\sin ^{2}(x) \cos (x)+e^{2 \sin (x+1)}$. Create a function that approximates $\frac{1}{2} u^{\prime \prime}-u^{\prime}$ on the Fourier grid points for a given N.

The advection equation

Recall that the advection equation is given by

$$
\begin{equation*}
u_{t}+c u_{x}=0 \tag{2.5}
\end{equation*}
$$

where c is the speed of the wave (the wave travels to the right for $c>0$). We will consider the solution of the advection equation on the circle; this essentially amounts to solving the advection equation on $[0,2 \pi]$ and assuming periodic boundary conditions.

[^0]

Figure 2.1: The derivative of $u(x)=\sin ^{2}(x) \cos (x)+e^{2 \sin (x+1)}$.

A common method for solving time-dependent PDEs is called the method of lines. To apply the method of lines to our problem, we use our Fourier grid points in $[0, \pi]$: given an even N, let $h=2 \pi / N$, so that $\left\{x_{1}, \ldots, x_{N}\right\}=\{h, 2 h, \ldots, 2 \pi-h, 2 \pi\}$. By using these grid points we obtain the collection of equations

$$
\begin{equation*}
u_{t}\left(x_{j}, t\right)+c u_{x}\left(x_{j}, t\right)=0, \quad t>0, \quad j=1, \ldots N \tag{2.6}
\end{equation*}
$$

Let $U(t)$ be the vector valued function given by $U(t)=\left(u\left(x_{j}, t\right)\right)_{j=1}^{N}$. Let $\mathcal{F}(U)(t)$ denote the discrete Fourier transform of $u(x, t)$ (in space), so that

$$
\mathcal{F}(U)(t)=(\hat{u}(k, t))_{k=-N / 2+1}^{N / 2}
$$

Define \mathcal{F}^{-1} similarly. Using the pseudospectral approximation in space leads to the system of ODEs

$$
\begin{equation*}
U_{t}+\vec{c} \mathcal{F}^{-1}(i \vec{k} \mathcal{F}(U))=0 \tag{2.7}
\end{equation*}
$$

where \vec{k} is a vector, and $\vec{k} \mathcal{F}(U)$ denotes element-wise multiplication. Similarly \vec{c} could also be a vector, if the wave speed c is allowed to vary.

Problem 2. Using a fourth order Runge-Kutta method (RK4), solve the

Figure 2.2: The solution of the variable speed advection equation; see Problem 2.

initial value problem

$$
\begin{equation*}
u_{t}+c(x) u_{x}=0 \tag{2.8}
\end{equation*}
$$

where $c(x)=.2+\sin ^{2}(x-1)$, and $u(x, t=0)=e^{-100(x-1)^{2}}$. Plot your numerical solution from $t=0$ to $t=8$. Note that the initial data is nearly zero near $x=0$ and 2π, and so we can use the pseudospectral method. ${ }^{a}$

[^1] in time.

[^0]: ${ }^{1}$ See Spectral Methods in MATLAB by Lloyd N. Trefethen. Another good reference is Chebyshev and Fourier Spectral Methods by John P. Boyd.

[^1]: ${ }^{a}$ This problem is solved in Spectral Methods in MATLAB using a leapfrog discretization

