
Lab 2

A Pseudospectral method
for periodic functions

Lab Objective: We look at a pseudospectral method with a Fourier basis, and
numerically solve the advection equation using a pseudospectral discretization in
space and a Runge-Kutta integration scheme in time.

Let f be a periodic function on [0, 2π]. Let x1, . . . , xN be N evenly spaced grid
points on [0, 2π]. Since f is periodic on [0, 2π], we can ignore the grid point x0 = 0.
We will further assume that N is even; similar formulas can be derived for N odd.
Let h = 2π/N ; then {x1, . . . , xN} = {h, 2h, . . . , 2π − h, 2π}.

The discrete Fourier transform (DFT) of f , denoted by f̂ or F(f), is given by

f̂(k) = h
N∑

j=1

e−ikxjf(xj) where k = −N/2 + 1, . . . , 0, 1, . . . , N/2.

The inverse DFT is then given by

f(xj) =
1

2π

N/2∑

k=−N/2

eikxj

ck
f̂(k), j = 1, . . . , N, (2.1)

where

ck =

{
2 if k = −N/2 or k = N/2,

1 otherwise.
(2.2)

The inverse DFT can then be used to define a natural interpolant (sometimes called
a band-limited interpolant) by evaluating (2.1) at any x rather than xj :

p(x) =
1

2π

N/2∑

k=−N/2

eikxf̂(k). (2.3)

The interpolant for f ′ is then given by

p′(x) = ik
1

2π

N/2−1∑

k=−N/2+1

eikxf̂(k). (2.4)
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Consider the function u(x) = sin2(x) cos(x)+e2 sin(x+1). Using (2.4), the deriva-
tive u′ may be approximated with the following code. 1 We note that although we
only approximate u′ at the Fourier grid points, (2.4) provides an analytic approxi-
mation of u′ in the form of a trigonometric polynomial.

import numpy as np

from scipy.fftpack import fft, ifft

import matplotlib.pyplot as plt

N=24

x1 = (2.*np.pi/N)*np.arange(1,N+1)

f = np.sin(x1)**2.*np.cos(x1) + np.exp(2.*np.sin(x1+1))

k = np.concatenate(( np.arange(0,N/2) ,

np.array([0]) , # Because hat{f}'(k) at k = N/2 is zero.

np.arange(-N/2+1,0,1) ))

# Approximates the derivative using the pseudospectral method

f_hat = fft(f)

fp_hat = ((1j*k)*f_hat)

fp = np.real(ifft(fp_hat))

# Calculates the derivative analytically

x2 = np.linspace(0,2*np.pi,200)

derivative = (2.*np.sin(x2)*np.cos(x2)**2. -

np.sin(x2)**3. +

2*np.cos(x2+1)*np.exp(2*np.sin(x2+1))

)

plt.plot(x2,derivative,'-k',linewidth=2.)
plt.plot(x1,fp,'*b')
plt.savefig('spectral2_derivative.pdf')
plt.show()

Problem 1. Consider again the function u(x) = sin2(x) cos(x) + e2 sin(x+1).
Create a function that approximates 1

2u
′′ − u′ on the Fourier grid points for

a given N .

The advection equation

Recall that the advection equation is given by

ut + cux = 0 (2.5)

where c is the speed of the wave (the wave travels to the right for c > 0). We
will consider the solution of the advection equation on the circle; this essentially
amounts to solving the advection equation on [0, 2π] and assuming periodic bound-
ary conditions.

1See Spectral Methods in MATLAB by Lloyd N. Trefethen. Another good reference is Cheby-
shev and Fourier Spectral Methods by John P. Boyd.
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Figure 2.1: The derivative of u(x) = sin2(x) cos(x) + e2 sin(x+1).

A common method for solving time-dependent PDEs is called the method of
lines. To apply the method of lines to our problem, we use our Fourier grid points in
[0,π]: given an evenN , let h = 2π/N , so that {x1, . . . , xN} = {h, 2h, . . . , 2π−h, 2π}.
By using these grid points we obtain the collection of equations

ut(xj , t) + cux(xj , t) = 0, t > 0, j = 1, . . . N. (2.6)

Let U(t) be the vector valued function given by U(t) = (u(xj , t))Nj=1. Let
F(U)(t) denote the discrete Fourier transform of u(x, t) (in space), so that

F(U)(t) = (û(k, t))N/2
k=−N/2+1.

Define F−1 similarly. Using the pseudospectral approximation in space leads to the
system of ODEs

Ut + c⃗F−1
(
ik⃗F(U)

)
= 0 (2.7)

where k⃗ is a vector, and k⃗F(U) denotes element-wise multiplication. Similarly c⃗
could also be a vector, if the wave speed c is allowed to vary.

Problem 2. Using a fourth order Runge-Kutta method (RK4), solve the
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Figure 2.2: The solution of the variable speed advection equation; see Problem 2.

initial value problem

ut + c(x)ux = 0, (2.8)

where c(x) = .2 + sin2(x − 1), and u(x, t = 0) = e−100(x−1)2 . Plot your
numerical solution from t = 0 to t = 8. Note that the initial data is nearly
zero near x = 0 and 2π, and so we can use the pseudospectral method. a

aThis problem is solved in Spectral Methods in MATLAB using a leapfrog discretization
in time.
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