Lab 1

Anisotropic Diffusion

Lab Objective: Demonstrate the use of finite difference schemes in image anal-
YS18.

A common task in image processing is to remove extra static from an image.
This is most easily done by simply blurring the image, which can be accomplished
by treating the image as a rectangular domain and applying the diffusion (heat)
equation:

ur = cAu

where ¢ is some diffusion constant and A is the Laplace operator. Unfortunately,
this also blurs the boundary lines between distinct elements of the image.

A more general form of the diffusion equation in two dimensions is:
up =V- (c(x,y,t)Vu)

where ¢ is a function representing the diffusion coefficient at each given point and
time. In this case, V- is the divergence operator and V is the gradient.

To blur a picture uniformly, choose ¢ to be a constant function. Since ¢ controls
how much diffusion is allowed at each point, it can be modified so that diffusion
is minimized across edges in the image. In this way we attempt to limit diffusion
near the boundaries between different features of the image, and allow smaller
details of the image (such as static) to blur away. This method for image denoising
is especially useful for denoising low quality images, and was first introduced by
Pietro Perona and Jitendra Malik in 1987. It is known as Anisotropic Diffusion or
Perona-Malik Diffusion.

A Finite Difference Scheme

Suppose we have some estimate E of the rate of change at a given point in an
image. E will be largest at the boundaries in the image. We will then let ¢(x,y,t) =
g(E(x,y,t)) where g is some function such that g(0) = 1 and mlingo g(z) = 0. Thus
¢ will be small where F is large, so that little diffusion occurs near the boundaries
of different portions of the image.



Lab 1. Anisotropic Diffusion

We will model this system using a finite differencing scheme with an array of
values at a 2D grid of points, and iterate through time. Let U, I'm be the discretized
approximation of the function u, n be the index in time, [ be the index along the
z-axis, and m be the index along the y-axis.

The Laplace operator can be approximated with the finite difference scheme
Uﬂl,m - 2[Jﬁm + Ulil,m + Ul?mfl - 2le?m. + Uﬁm+1

(Az)? (Ay)? '
A good metric to use with images is to let the distance between each pixel be equal
to one, so Ax = Ay = 1. Rearranging terms, we obtain

Au = (Uln—l,m - Ulr,lm) + (Ul’r—L‘rl,m - Ul’r}m) + (Ulr,lm—l - Uﬁm) + (Ul7,lm+1 - UlT,Lm)

Again, since we are working with images and not some time based problem, we can
without loss of generality let At = 1, so we obtain the finite difference scheme

Ul"?;]- = UlT,Lm + (Ulnfl,m - Ulilm) + (Ulﬁrl,m - Uﬁm) + (Ul?mfl - Uﬁm) + (Ulyferl - Ulnm)

We will now limit the diffusion near the edges of objects by making the modification

AU = Ugy + Uyy =

Ut = Ulm+A( (U710 — Ul"mD(UHm Uf'n)
+ 91U 1m = Ul DU — Ul)
+ g(Ufr — Ulm|><U;fm1 Uf'n)
9V i1 = Ul ) (U = Ult) ),

where \ < i is the stability condition.

In this difference scheme, each term is affected most by nearby terms that are
most similar to it, so less diffusion will happen anywhere there is a sharp difference
between pixels. This scheme also has the useful property that it does not increase
or decrease the total brightness of the image. Intuitively, this is because the effect
of each point on its neighbors is exactly the opposite effect its neighbors have on it.

1
H_(%)Q. The

parameter o allows us to control how much diffusion decreases across boundaries,
with larger o values allowing more diffusion. Note that g(0) =1 and lim g(x) =0
Tr—00

2\2
Two commonly used functions for g are g(z) = e=(5)" and g(z) =

for both functions. In this lab we use g(z) = e ()",

It is worth noting that this particular difference scheme is not an accurate finite
difference scheme for the version of the diffusion equation we discussed before, but
it does accomplish the same thing in the same way. As it turns out, this particular
scheme is the solution to a slightly different diffusion PDE, but can still be used the
same way.

For this lab’s examples we read in the image using the scipy.misc.imread function,
and normalized it so that the colors are represented as floating point values between
0 and 1. An image can converted to black and white when it is read by including
the argument flatten=True

Our finite difference scheme can be implemented using purely vector operations.
First consider the case where the boundaries of the image are considered fixed. The
scheme is implemented naively with the following code:



import numpy as np

from scipy.misc import imread, imsave
from matplotlib import pyplot as plt
from matplotlib import cm

def anisdiff_bw_noBCs(U, N, lambda_, g):
""" Run the Anisotropic Diffusion differencing scheme
on the array A of grayscale values for an image.
Perform N iterations, use the function g
to limit diffusion across boundaries in the image.
Operate on A inplace. """
for i in xrange(N):
U[1:-1,1:-1] += lambda_ * \
(g(Ul:-2,1:-1] - U[1:-1,1:-1]) =*
(U[:-2,1:-1] - U[1:-1,1:-1]) +
g(U[2:,1:-1] - U[1:-1,1:-1]) *
(U[2:,1:-1] - U[1:-1,1:-1]) +
g(Ul1:-1,:-2] - U[1:-1,1:-1]) =*
(Ul1:-1,:-2] - U[1:-1,1:-1]) +
g(U[1:-1,2:1 - U[1:-1,1:-1]) *
(Ul1:-1,2:1 - Ul1:-1,1:-11))

We can implement anisotropic diffusion for black and white images using a
different set of boundary conditions. For the top edge let

Ul = Ul A MU = Ul DUy g = Ullya)
+ 91U = UL DUl 1 — U)
+ 91Ul 1 = Ul D (U1 = Ull));
the other edges are treated similarly. For the top left corner let
Ulyxl = U/ AU = UL DU 0 = Ul)
+ (Ul 1 = Ul ) U1 = Ul

and similarly for the other corners. Essentially we are just using the terms of the
difference scheme that are actually defined.

Here is a non-optimized implementation that performs the desired computations
for a generic function g.

def anisdiff_bw_withBCs(U, N, lambda_, g):
""" Run the Anisotropic Diffusion differencing scheme
on the array U of grayscale values for an image.
Perform N iterations, use the function g
to limit diffusion across boundaries in the image.
Operate on U inplace. """

difs = np.empty_like(U)

for i in xrange(N):
difs[:-1] = g(U[1:] - U[:-11) * (U[1:] - U[:-11)
difs[-1] =0
difs[1:] += g(U[:-1] - U[1:]1) * (U[:-1] - U[1:1)
difs[:,:-1] += g(U[:,1:] - U[:,:-1]1) * (U[:,1:] - U[:,:-1])
difs([:,1:] += g(U[:,:-1] - U[:,1:]1) * (U[:,:-1] - U[:,1:])
difs *= lambda_
U += difs




6 Lab 1. Anisotropic Diffusion

We can use this code on an image like this:

from scipy.misc import imread, imsave
from matplotlib import pyplot as plt
from matplotlib import cm

# Read the image file 'test.png'.

# Multiply by 1. / 255 to change the values so that they are floating point
# numbers ranging from O to 1.

U = imread('test.jpg', flatten=True) * (1. / 255)

# Set inputs for the function.

sigma = .1

g = lambda x: np.exp(x * x * (-1. / sigmax*2))
lambda_ = .25

N = 50

anisdiff_bw_noBCs(U, N, lambda_, g)
# Show the image.

plt.imshow(U, cmap=cm.gray)
plt.show()

Speeding up the Implementation

We will use the package numexpr to speed up our computations. Numexpr is a
package that can evaluate simple algebraic expressions involving arrays quickly by
recognizing and computing common subexpressions and optimizing for fast cache
management when accessing memory. You may recall that the primary function in
the user interface of numexpr is the evaluate function. It evaluates an expression
(in some cases, much faster than NumPy can) that has been expressed as a string
containing the names of array objects that are in the current scope. Below we
provide some example code that uses numexpr:

import numpy as np
import numexpr as ne

x = np.arange(1000)

y = np.arange(1000,2000)

=
|

= ne.evaluate('x**2. + y**2.')
v = ne.evaluate('sum(x**2. + y**2.)')

Problem 1. Implement anisotropic diffusion (with the correct boundary
conditions) using numexpr to optimize the computations. How much speedup
can you get over the unoptimized Numpy version? (Note: It is not difficult
to speedup the Numpy implementation by reducing the need for Numpy to
allocate space for temporary areas. However, we will use numexpr to speed
up our implementation.)

In your function, use



original image 5 iterations with 0 = .7 and A = .2

20 iterations 100 iterations

Working with Color Images

Colored images can be processed in a similar manner. Instead of being represented
as a two-dimensional array, colored images are represented as three dimensional
arrays. The third dimension is used to store the intensities of each of the standard
3 colors. This diffusion process can be carried out in the exact same way, on each
of the arrays of intensities for each color, but instead of detecting edges just in
one color, we need to detect edges in any color, so instead of using something



Lab 1. Anisotropic Diffusion

of the form g(|Uj" , . — U[",,|) as before, we will now use something of the form
gUL o = U, where U, and U, are vectors now instead of scalars. The
difference scheme can be treated as an equation on vectors in 3-space and now reads:

Ulr,Lngl = Ulnm—’_/\(g(HUlil,m - Ul’r}mH)(Ul”il,m - Ul?m)
+ g(HUlT—l‘,-l,m - Ulr,LmH)(UlZ—l,m - UlT,Lm)
+ g(HUl’,Lm—l - UlT,LmH)(UZT,Lm—l - Ulilm)
+'g(H[%Zn+i _'LUZnH>(LU;n+i _'IGZn)>
When implementing this scheme for colored images, use the 2-norm on 3-space,

ie ||z|| = \/2? + 2% + 22 where x1, 22, and x5 are the different coordinates of z.
We can use this function like this:

A = imread('test.jpg') / np.float32(255.)
Ac = A.copy(Q)

sigma = .1

lambda_ = .2

N=5

anisdiff_color_noBCs(A, N, lambda_, sigma)
plt.imshow(A)

plt.show()

Problem 2. Make a new version of the code you wrote for the previous
problem which processes a colored image. Measure the difference between
pixels using the 2-norm. Use the corresponding vector versions of the bound-
ary conditions given in Problem 1.

To do this, you must break up the computation of the different terms so
that you can compute the norm along each triple of color values and then
broadcast the g values along the last axis of the array of differences.

Problem 3. Use numexpr to speed up your implementation of anisotropic
diffusion for color images.




	Preface
	I   Labs
	Anisotropic Diffusion


