
Lab 1

Total Variation and Image
Processing

Lab Objective: Minimizing an energy functional is equivalent to solving the
resulting Euler-Lagrange equations. We introduce the method of steepest descent
to solve these equations, and apply this technique to a denoising problem in image
processing.

The Gradient Descent method

Consider an energy functional E[u], defined over a collection of admissible functions
u : Ω ⊂ Rn → R. We suppose the energy functional E has the form

E[u] =

∫

Ω
L(x, u,∇u) dx

where L = L(x, y, w) is a function Rn × R × Rn → R. A standard result from
the calculus of variations states that a minimizing function u∗ satisfies the Euler-
Lagrange equation

Ly − div (Lw) = 0. (1.1)

This equation is typically an elliptic PDE, possessing boundary conditions as-
sociated with restrictions on the class of admissible functions u. To more easily
compute (1.1), we may consider a related parabolic PDE:

ut = −(Ly − divLw),

u(x, t = 0) = u0(x).
(1.2)

A steady state solution of (1.2) does not depend on time, and thus is a solution
of the Euler-Lagrange equation. In practice, it is often easier to evolve an initial
guess u0 using (1.2), stopping whenever its steady state is well-approximated, then
to solve (1.1) directly.

Example 1.1. Consider the energy functional

E[u] =

∫

Ω
∥∇u∥2 dx,

3

4 Lab 1. Total Variation and Image Processing

where the class of admissible functions u satisfy appropriate Dirichlet conditions on
∂Ω. The minimizing function u∗ satisfies the Euler-Lagrange equation

−div∇u = −△u = 0.

The related PDE (called the gradient descent flow) is the well-known equation

ut = △u

describing heat flow.

The previous example brings to mind an interesting question: The Euler-Lagrange
equation could equivalently be described as △u = 0, leading to the PDE ut = −△u.
Since this (backward) heat equation is ill-posed, it will not be helpful in our search
for a steady-state.

Let us take the time to put (1.2) on a more rigorous footing. Recalling the
derivation of the Euler-Lagrange equation, we note that

δE(u; v) =
d

dt
E(u+ tv)

∣∣∣∣
t=0

,

=

∫

Ω
(Ly(u)− divLw(u))v dx

for each u and each admissible perturbation v. We can now employ the Cauchy-
Schwarz inequality:

|δE(u; v)| = |⟨Ly(u)− divLw(u), v⟩L2(Ω)|,
≤ ∥Ly(u)− divLw(u)∥ · ∥v∥,

with equality iff v = αu for some α ∈ R. This implies that the “direction” v =
Ly(u)− divLw(u) maximizes δE(u). Similarly,

v = −(Ly(u)− divLw(u))

points in the direction of steepest descent, and the flow described by (1.2) tends to
move toward a state of lesser energy.

Example: Finding the curve that surface of revolution minimizes surface
area

Consider the collection of smooth curves defined on [a, b], with fixed end points
y(a) = ya, y(b) = yb. The surface obtained by revolving a curve y(x) about the
x-axis has area given by the functional

A[y] =

∫ b

a
2πy

√
1 + (y′)2 dx.

The Euler-Lagrange equation is

0 = 1− y
y′′

1 + (y′)2
,

= 1 + (y′)2 − yy′′,

(1.3)

5

and the resulting gradient descent flow is given by

ut = −1− (y′)2 + yy′′,

u(a, t) = ya, u(b, t) = yb,

u(x, 0) = g(x),

(1.4)

where g(x) is an appropriate initial guess.

Consider a second-order order discretization in space, with a simple forward
Euler step in time. Let us impose the conditions y(−1) = 1, y(1) = 7. We begin by
creating a grid to approximate the solution on:

import numpy as np

a, b = -1, 1.

alpha, beta = 1., 7.

Define variables x_steps, final_T, time_steps

delta_t, delta_x = final_T/time_steps, (b-a)/x_steps

x0 = np.linspace(a,b,x_steps+1)

Often there is a stability condition required for a numerical scheme. One that is
common for this discretization is that △t

(△x)2 ≤ 1
2 . We continue by checking that this

condition is satisfied, and setting our initial guess to be the straight line connecting
the end points.

Check a stability condition for this numerical method

if delta_t/delta_x**2. > .5:

print "stability condition fails"

u = np.empty((2,x_steps+1))

u[0] = (beta - alpha)/(b-a)*(x0-a) + alpha

u[1] = (beta - alpha)/(b-a)*(x0-a) + alpha

Finally, we define the right hand side of our difference scheme, and time step
until we achieve a desired accuracy.

def rhs(y):

Approximate first and second derivatives to second order accuracy.

yp = (np.roll(y,-1) - np.roll(y,1))/(2.*delta_x)

ypp = (np.roll(y,-1) - 2.*y + np.roll(y,1))/delta_x**2.

Find approximation for the next time step, using a first order Euler step

y[1:-1] -= delta_t*(1. + yp[1:-1]**2. - 1.*y[1:-1]*ypp[1:-1])

Time step until successive iterations are close

iteration = 0

while iteration < time_steps:

rhs(u[1])

if norm(np.abs((u[0] - u[1]))) < 1e-5: break

u[0] = u[1]

iteration+=1

print "Difference in iterations is ", norm(np.abs((u[0] - u[1])))

print "Final time = ", iteration*delta_t

6 Lab 1. Total Variation and Image Processing

Figure 1.1: The solution of (1.3), found using the gradient descent flow (1.4).

Image Processing: A First Attempt

We represent a (greyscale) image by a function u : Ω → R, Ω ⊂ R2. We use the
following code to read an image into an array of floating point numbers, add some
noise, and save the noisy image:

from numpy.random import random_integers, uniform, randn

import matplotlib.pyplot as plt

from matplotlib import cm

from scipy.misc import imread, imsave

imagename = 'baloons_resized_bw.jpg'
changed_pixels=40000

Read the image file imagename into an array of numbers, IM

Multiply by 1. / 255 to change the values so that they are floating point

numbers ranging from 0 to 1.

IM = imread(imagename, flatten=True) * (1. / 255)

IM_x, IM_y = IM.shape

for lost in xrange(changed_pixels):

x_,y_ = random_integers(1,IM_x-2), random_integers(1,IM_y-2)

val = .1*randn() + .5

IM[x_,y_] = max(min(val,1.), 0.)

imsave(name=("noised_"+imagename),arr=IM)

We note that a color image can be represented by three functions u1, u2, and u3.
In this lab we will work with black and white images, but the techniques can easily

7

be used on more general images.

Here is our first attempt at denoising: given a noisy image f , we look to find a
denoised image u minimizing the energy functional

E[u] =

∫

Ω
L(x,∇u, u) dx, (1.5)

where

L(x,∇u, u) =
1

2
(u− f)2 +

λ

2
|∇u|2,

=
1

2
(u− f)2 +

λ

2
(u2

x + u2
y)

2.

This energy functional penalizes 1) images that are too different from the original
noisy image, and 2) images that have a large derivatives. The minimizing denoised
image u will balance these two different costs.

Solving for the original denoised image u is a difficult inverse problem; some
information about the image is irretrievably lost when the noise is introduced. A
priori information can however be used to guess at the structure of the original
image. For example, in this problem λ represents our best guess on how much
noise was added to the image. λ is known as a regularization parameter in inverse
problem theory.

The Euler-Lagrange equation determined from (1.5) is

Lu − div L∇u = (u− f)− λ△u,

= 0.

The resulting gradient descent flow is then given by

ut = −(u− f − λ△u),

u(x, 0) = f(x).
(1.6)

Let un
ij represent our approximation to u(xi, yj) at time tn. We will approximate

ut with a forward Euler difference, and △u with centered differences:

ut ≈
un+1
ij − un

ij

△t
,

uxx ≈
un
i+1,j − 2un

ij + un
i−1,j

△x2
,

uyy ≈
un
i,j+1 − 2un

ij + un
i,j−1

△y2
.

Problem 1. Using △t = 1e − 3,λ = 40,△x = 1, and △y = 1, implement
the numerical scheme mentioned above to obtain a solution u. (So Ω =
[0, nx]× [0, ny], where nx and ny represent the number of pixels in the x and
y dimensions, respectively.) Take 250 steps in time. Compare your results
with Figure 1.3.

Hint: use the function np.roll to compute the spatial derivatives. Con-
sider the following:

8 Lab 1. Total Variation and Image Processing

Original image Image with white noise

Figure 1.2: Noise.

u_xx = np.roll(u,-1,axis=0) - 2*u + np.roll(z,1,axis=0)

Image Processing: Total Variation Method

We represent an image by a function u : [0, 1]× [0, 1] → R. A C1 function u : Ω → R
has bounded total variation on Ω (BV (Ω)) if

∫
Ω |∇u| < ∞; u is said to have total

variation
∫
Ω |∇u|. Intuitively, the total variation of an image u increases when noise

is added.

The total variation approach was originally introduced by Ruding, Osher, and
Fatemi1. It was formulated as follows: given a noisy image f , we look to find a
denoised image u minimizing

∫

Ω
|∇u(x)| dx (1.7)

subject to the constraints
∫

Ω
u(x) dx =

∫

Ω
f(x) dx, (1.8)

∫

Ω
|u(x)− f(x)|2 dx = σ|Ω|. (1.9)

1L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms”,
Physica D., 1992.

9

Initial diffusion-based approach Total variation based approach

Figure 1.3: The solutions of (1.6) and (1.11), found using a first order Euler step
in time and centered differences in space.

Intuitively, (1.7) penalizes fast variations in f - this functional together with the
constraint (1.8) has a constant minimum of u = 1

|Ω|
∫
Ω u(x) dx. This is obviously

not what we want, so we add a constraint (1.9) specifying how far u(x) is required
to differ from the noisy image f . More precisely, (1.8) specifies that the noise in
the image has zero mean, and (1.9) requires that a variable σ be chosen a priori to
represent the standard deviation of the noise.

Chambolle and Lions proved that the model introduced by Rudin, Osher, and
Fatemi can be formulated equivalently as

F [u] = min
u∈BV (Ω)

∫

Ω
|∇u|+ λ

2
(u− f)2 dx, (1.10)

where λ > 0 is a fixed regularization parameter2. Notice how this functional differs
from (1.5):

∫
Ω |∇u| instead of

∫
Ω |∇u|2. This turns out to cause a huge difference

in the result. Mathematically, there is a nice way to extend F and the class of
functions with bounded total variation to functions that are discontinuous across
hyperplanes. The term

∫
|∇| tends to preserve edges/boundaries of objects in an

image.

2A. Chambelle and P.-L. Lions, “Image recovery via total variation minimization and related
problems”, Numer. Math., 1997.

10 Lab 1. Total Variation and Image Processing

The gradient descent flow is given by

ut = −λ(u− f) +
uxxu2

y + uyyu2
x − 2uxuyuxy

(u2
x + u2

y)
3/2

,

u(x, 0) = f(x).

(1.11)

Notice the singularity that occurs in the flow when |∇u| = 0. Numerically we will
replace |∇u|3 in the denominator with (ϵ+ |∇u|2)3/2, to remove the singularity.

Problem 2. Using △t = 1e−3,λ = 1,△x = 1, and △y = 1, implement the
numerical scheme mentioned above to obtain a solution u. Take 200 steps in
time. Compare your results with Figure 1.3. How small should ϵ be?

Hint: To compute the spatial derivatives, consider the following:

u_x = (np.roll(u,-1,axis=0) - np.roll(z,1,axis=0))/2

u_xx = np.roll(u,-1,axis=0) - 2*u + np.roll(u,1,axis=0)

u_xy = (np.roll(u_x,-1,axis=1) - np.roll(u_x,1,axis=1))/2.

	Preface
	I Labs
	Total Variation and Image Processing

