
Lab 1

Optimal Reentry of a
Spacecraft

Lab Objective: We consider the problem of minimizing the heating experienced
by a spacecraft during reentry. The boundary value problem (BVP) associated with
the reentry of a spacecraft is inherently challenging: the craft must descend quickly
enough to enter the atmosphere, but pull out soon enough to prevent overheating or
crashing. Problems involving variational calculus and optimal control often include
the numerical solution of a challenging BVP.

A fundamental topic considered in aerospace engineering is the process of landing
a spacecraft. Landing a spacecraft requires a massive reduction in the kinetic energy
of the craft. That reduction can be accomplished either through the use of massive
quantities of fuel (very expensive), or by transforming kinetic energy into heat. That
heat must then be absorbed by the atmosphere and the spacecraft. The question
then is how to choose the optimal path for reentry into the atmosphere, where the
total heating experienced by the craft is minimized.

We begin by giving a control system1 describing the path of a spacecraft through
the atmosphere (we assume the spacecraft is similar to the Apollo craft). Our
dependent variables to consider are the velocity v of the spacecraft, the angle γ of
the flight path, and the normalized altitude ξ above the Earth’s surface. (ξ = h/R,
where R is the radius of the Earth and h the altitude of the spacecraft above the
Earth.) A control variable u will be used to represent the angle of attack of the
spacecraft. The flight path can then be described by

v̇ = −sρv2CD(u)− g sin(γ)

(1 + ξ)2
,

γ̇ = sρvCL(u) +
v cos(γ)

R(1 + ξ)
− g cos γ

v(1 + ξ)2
,

ξ̇ =
v sin γ

R
.

(1.1)

CD and CL represent drag and lift coefficients, and are functions of u: CD(u) =
1.174−.9 cosu, CL(u) = 0.6 sinu. The atmospheric density ρ is a function of height,

1This control problem and its numerical solution are thoroughly described in ‘Introduction to
Numerical Analysis’ by J. Stoer, R. Bulirsch (pg 524). We will mirror their presentation throughout
this lab.
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Figure 1.1: Apollo 8 during launch

which we represent by ρ(ξ) = ρ0e−Rβξ, where ρ0 is the atmospheric density at the
surface of the earth. Other parameters include the force of gravity g, and s = 1

2S/m,
where S is the frontal area of the craft and m is its mass. The numerical values we
will use are coded below, along with the drag and lift functions.

from __future__ import division

from math import pi, sqrt, sin, cos, exp

from numpy import linspace, array, tanh, cosh, ones, arctan

import numpy as np

from scipy.special import erf

from scipy.optimize import root

from bvp6c import bvp6c, bvpinit, deval

from structure_variable import struct

R = 209

beta = 4.26

rho0 = 2.704e-3

g = 3.2172e-4

s = 26600

def C_d(u):

return 1.174 - 0.9*cos(u)

def C_l(u):

return 0.6*sin(u)

We will require that the trajectory of the spacecraft satisfy the boundary con-
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ditions

v(0) = 0.36 (36000 ft/sec)

γ(0) = −8.1◦
π

180◦

ξ(0) =
4

R
(h = 400000 ft)

v(T ) = 0.27

γ(T ) = 0

ξ(T ) =
2.5

R

(1.2)

where T represents the time at the end of the (first) reentry maneuver. These
boundary conditions are similar to those encountered at the end of each Apollo
mission to the moon.

To simpify notation, we will also write (1.1) in the form y′ = G(y), where
y = [y0, y1, y2]T = [v, γ, ξ]T and G has component functions G = [G0, G1, G2]T .
The total heating is

J [u] =

∫ T

0
10y30

√
ρ.

The Hamiltonian corresponding to this control system is

H = 10y30
√
ρ+ λ0G0 + λ1G1 + λ2G2, (1.3)

where λ = [λ0,λ1,λ2]T is the adjoint variable. The optimal state and adjoint
equations are thus given by

ẏ = Hλ,

λ̇ = −Hy

(1.4)

To our boundary conditions we add the terminal condition that H = 0 at t = T .
Finally, from the condition ∂H

∂u = 0 we find that the optimal control satisfies

tanu =
6λ1

9y0λ0
. (1.5)

Most BVP solvers require an equal number of differential equations and bound-
ary conditions. Currently we have a free boundary value problem; there are 6 ODEs
and 7 boundary conditions, and the length of the reentry maneuver, T , is still un-
known. By making the transformation x = t/T , and treating T as a dependent
variable, the BVP is now defined on the interval (0, 1) and is augmented with an
additional ODE:

y′ = THλ,
′ =

d

dx
,

λ′ = −THy,

T ′ = 0.

(1.6)

This BVP has 7 ODEs, and with the 7 boundary conditions introduced earlier it
has the required form.
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Figure 1.2: The Apollo 8 mission was the first to orbit the moon and return to
earth. After a flight of three days from earth, they orbited the moon ten times in
20 hours before making the return trip. This photograph shows a portion of the far
side of the moon, as seen by the Apollo 8.

Problem 1. Write a function ode that implements the ODEs for the original
control system along with the adjoint equations (1.6). Notice that the adjoint
variables and the final time are coordinates of y : y3 = p0, y4 = p1, y5 = p2,
and y6 = T .

def ode(x,y):

# Parameters:

# x: independent variable (unused in our ODEs)

# y: vector-valued dependent variable; it is an ndarray

# with shape (7,)

# Returns:

# ndarray of length (7,) that evalutes the RHS of the ODES

Constructing an Initial Guess

We will use the BVP solver bvp6c. Like any solver capable of handling nonlinear
problems, bvp6c requires an initial guess to jump-start its Newton-like iteration
process. Our nonlinear BVP is very sensitive, and requires an initial guess that is
quite close to the solution. This sensitivity is physically meaningful. The spacecraft
is traveling at a speed far greater than a typical aircraft. If the control is not
aggressive, the spacecraft will fall/‘bounce’ back into space as it encounters the
atmosphere at a high velocity. However, if the control lasts too long, the craft will
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Figure 1.3: The optimal path for the reentry maneuver of a spacecraft. This path
minimizes the heating of the spacecraft, and satisfies (1.6),(1.2), and the terminal
condition H(T ) = 0.

overheat or crash.

Since this is a sensitive problem, we will use a heuristic method to construct
a good initial guess. From aerospace engineers we know that the control u should
empirically look like Figure 1.4; we can create a smooth approximation of the form
u = p0 erf(p1(p2 − t/T )), where p0, p1, and p2 are unknown constants. To help us
determine these constants, and to find good initial guesses for v, γ, and ξ, we define
an auxiliary BVP to help us come up with a good initial guess for the original BVP:

ẏ0 = −sρy20CD(u)− g sin(y1)

(1 + y2)2
,

ẏ1 = sρy0CL(u) +
y0 cos(y1)

R(1 + y2)
− g cos y1

y0(1 + y2)2
,

ẏ2 =
y0 sin y1

R
,

ṗ0 = 0,

ṗ1 = 0,

ṗ2 = 0.

(1.7)

This auxiliary BVP is defined on the interval [0, T ], where T is unknown. We
guess at T : the maneuver will occur quickly, so how about 230 seconds? Below we
create functions for the ODE and for the boundary conditions.
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T0 = 230

def ode_auxiliary(x,y):

u = y[3]*erf( y[4]*(y[5]-(1.*x)/T0) )

rho = rho0*exp(-beta*R*y[2])

out = array([-s*rho*y[0]**2*C_d(u) - g*sin(y[1])/(1+y[2])**2,

( s*rho*y[0]*C_l(u) + y[0]*cos(y[1])/(R*(1 + y[2])) -

g*cos(y[1])/(y[0]*(1+y[2])**2) ),

y[0]*sin(y[1])/R,

0,

0,

0 ])

return out

def bcs_auxiliary(ya,yb):

out1 = array([ ya[0]-.36,

ya[1]+8.1*pi/180,

ya[2]-4/R

])

out2 = array([ yb[0]-.27,

yb[1],

yb[2]-2.5/R

])

return out1, out2

The two main functions used by bvp6c are bvpinit and deval. solve requires an
initial guess, which you will create in Problem 2.

options = struct()

# options include abstol, reltol, singularterm, stats, vectorized, maxnewpts,←↩
slopeout,xint

options.abstol, options.reltol = 1e-8, 1e-7

options.fjacobian = ode_auxiliary_jacobian

options.bcjacobian = bcs_auxiliary_jacobian

options.nmax = 2000

solinit = bvpinit(np.linspace(0,1,100),initial_guess)

sol = bvp6c(ode,bcs,solinit,options)

N = 240

xint = linspace(0,T0,N+1)

num_sol_auxiliary, _ = deval(sol,xint)

Problem 2. Write the function guess_auxiliary referenced in the code above.
This function provides an initial guess to bvp_solver for the auxiliary BVP
described by (1.7) and (1.2). Use the heuristic data provided in Figure 1.4
to find good estimates of p0, p1, and p2. Use Figure 1.3 to estimate the
trajectories of y0, y1, and y2. Then run the code above to check that your
initial guess is adequate.

At this point we have constructed good initial guesses for the dependent variables
y0, y1, y2, and y6 (representing the total time of the manuever) in the original BVP



9

Heuristic for the control u, provided by
engineers.

A smooth initial approximation of the
control.

Figure 1.4: We construct a smooth estimate for the control u, by supposing the
control has the form u = p0 erf(p1(p2 − t/T )) and estimating parameters p0, p1, p2.

(1.6). We now need to construct initial guesses for the adjoint variables y3, y4, and
y5.

By reexamining the conditionHu = 0, we find that the optimal control u satisfies

sinu =
−0.6y4

α
cosu =

−0.9y0y3
α

where α =
√

(0.6y4)2 + (0.9y0y3)2. From this we know that y3 < 0, since cosu > 0.
A simple guess would be y3 = −1. (Recall that the adjoint variables are unique up
to some scaling.) We can then approximate y4 from the relationship

tanu =
6y4
9y0y3

.

To approximate y5, we use the identity H = 0.

Problem 3. Adapt your previous code to solve the original, dimension seven
BVP. Use the solution of the auxiliary BVP to construct a good initial guess.
Plot the control u. How long does the reentry maneuver take?
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