
Lab 1

The Inverted Pendulum

Lab Objective: We will set up the LQR optimal control problem for the inverted
pendulum and compute the solution numerically.

Think back to your childhood days when, for entertainment purposes, you’d
balance objects: a book on your head, a spoon on your nose, or even a broom on
your hand. Learning how to walk was likely your initial introduction to the inverted
pendulum problem.

A pendulum has two rest points: a stable rest point directly underneath the
pivot point of the pendulum, and an unstable rest point directly above. The generic
pendulum problem is to simply describe the dynamics of the object on the pendu-
lum (called the ‘bob’). The inverted pendulum problem seeks to guide the bob
toward the unstable fixed point at the top of the pendulum. Since the fixed point
is unstable, the bob must be balanced relentlessly to keep it upright.

The inverted pendulum is an important classical problem in dynamics and con-
trol theory, and is often used to test different control strategies. One application of
the inverted pendulum is the guidance of rockets and missiles. Aerodynamic insta-
bility occurs because the center of mass of the rocket is not the same as the center
of drag. Small gusts of wind or variations in thrust require constant attention to
the orientation of the rocket.

The Simple Pendulum

We begin by studying the simple pendulum setting. Suppose we have a pendulum
consisting of a bob with mass m rotating about a pivot point at the end of a
(massless) rod of length l. Let θ(t) represent the angular displacement of the bob
from its stable equilibrium. By Hamilton’s Principle, the path θ that is taken by
the bob minimizes the functional

J [θ] =

∫ t1

t0

L, (1.1)

where the Lagrangian L = T −U is the difference between the kinetic and potential
energies of the bob.
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Figure 1.1: The frame of reference for the simple pendulum problem.

The kinetic energy of the bob is given by mv2/2, where v is the velocity of the
bob. In terms of θ, the kinetic energy becomes

T =
m

2
v2 =

m

2
(ẋ2 + ẏ2),

=
m

2
((l cos(θ)θ̇)2 + (l sin(θ)θ̇)2),

=
ml2θ̇2

2
.

(1.2)

The potential energy of the bob is U = mg(l − l cos θ). From these expressions we
can form the Euler-Lagrange equation, which determines the path of the bob:

0 = Lθ −
d

dx
Lθ̇,

= −mgl sin θ −ml2θ̈,

= θ̈ +
g

l
sin θ.

(1.3)

Since in this setting the energy of the pendulum is conserved, the equilibrium po-
sition θ = 0 is only Lyapunov stable. When forces such as friction and air drag are
considered θ = 0 becomes an asymptotically stable equilibrium.

The Inverted Pendulum

The Control System

We consider a gift suspended above a rickshaw by a (massless) rod of length l.
The rickshaw and its suspended gift will have masses M and m respectively, M >
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Figure 1.2: The inverted pendulum problem on a mobile rickshaw with a present
suspended above.

m. Let θ represent the angle between the gift and its unstable equilibrium, with
counterclockwise orientation. Let v1 and v2 represent the velocities of the rickshaw
and the gift, and F the force exerted on the rickshaw. The rickshaw will be restricted
to traveling along a straight line (the x-axis).

By Hamilton’s Principle, the path (x, θ) of the rickshaw and the present mini-
mizes the functional

J [x, θ] =

∫ t1

t0

L, (1.4)

where the Lagrangian L = T −U is the difference between the kinetic energy of the
present on the pendulum, and its potential energy.

Since the position of the rickshaw and the present are (x(t), 0) and (x−l sin θ, l cos θ)
respectively, the total kinetic energy is

T =
1

2
Mv21 +

1

2
mv22 ,

=
1

2
Mẋ2 +

1

2
m((ẋ− lθ̇ cos θ)2 + (−lθ̇ sin θ)2),

= ẋ2 + l2θ̇2 − 2lẋθ̇ cos θ.

(1.5)

The total potential energy is

U = mgl cos θ − Fx.

Since the path (x, θ) of the rickshaw and the present satisfy the Euler-Lagrange
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differential equations

∂L

∂x
− d

dt

∂L

∂ẋ
= 0,

∂L

∂θ
− d

dt

∂L

∂θ̇
= 0,

(1.6)

after expanding (1.6) we see that x(t) and θ(t) satisfy

F = (M +m)ẍ−mlθ̈ cos θ +mlθ̇2 sin θ,

lθ̈ = g sin θ + ẍ cos θ.
(1.7)

At this point we make a further simplifying assumption. If θ starts close to 0,
we may assume that the corresponding force F will keep θ small. In this case, we
linearize (1.7) about (θ, θ̇) = (0, 0), obtaining the equations

F = (M +m)ẍ−mlθ̈,

lθ̈ = gθ + ẍ.

These equations can be further manipulated to obtain

ẍ =
1

M
F − m

M
gθ,

θ̈ =
1

Ml
F +

g

Ml
(M +m)θ.

(1.8)

We will now write (1.8) as a first order system. Making the assignments x1 = x,
x2 = x′

1, θ1 = θ, θ2 = θ′1, letting u = F represent the control variable, we obtain
⎡

⎢⎢⎣

x1

x2

θ1
θ2

⎤

⎥⎥⎦

′

=

⎡

⎢⎢⎣

0 1 0 0
0 0 mG

M 0
0 0 0 1
0 0 g

Ml (M +m) 0

⎤

⎥⎥⎦

⎡

⎢⎢⎣

x1

x2

θ1
θ2

⎤

⎥⎥⎦+ u

⎡

⎢⎢⎣

0
1
M
0
1
Ml

⎤

⎥⎥⎦ ,

which can be written more concisely as

z′ = Az +Bu.

Problem 1. Write a function that returns the matrices A,B,Q, and R given
above. Let g = 9.8 m/s2.

def linearized_init(M, m, l, q1, q2, q3, q4, r):

'''
Parameters:

----------

M, m: floats

masses of the rickshaw and the present

l : float

length of the rod

q1, q2, q3, q4, r : floats

relative weights of the position and velocity of the rickshaw, ←↩
the

angular displacement theta and the change in theta, and the ←↩
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control

Return

-------

A : ndarray of shape (4,4)

B : ndarray of shape (4,1)

Q : ndarray of shape (4,4)

R : ndarray of shape (1,1)

'''
pass

The infinite time horizon LQR problem

We consider the cost function

J [z] =

∫ ∞

0
(q1x

2
1 + q2x

2
2 + q3θ

2
1 + q4θ

2
2 + ru2) dt

=

∫ ∞

0
zTQz + uTRudt

(1.9)

where q1, q2, q3, q4, and r are nonnegative weights, and

Q =

⎡

⎢⎢⎣

q1 0 0 0
0 q2 0 0
0 0 q3 0
0 0 0 q4

⎤

⎥⎥⎦ , R =
[
r
]
.

The optimal control problem (1.9) is an example of a Linear Quadratic Regulator
(LQR), and is known to have an optimal control ũ described by a linear state
feedback law:

ũ = −R−1BTP z̃.

Here P is a matrix function that satisfies the Riccati differential equation (RDE)

Ṗ (t) = PA+ATP +Q− PBR−1BTP.

Since this problem has an infinite time horizon, we have Ṗ = 0. Thus P is a constant
matrix, and can be found by solving the algebraic Riccati equation (ARE)

PA+ATP +Q− PBR−1BTP = 0. (1.10)

The evolution of the optimal state vector z̃ can then be described by 1

˙̃z = (A−BR−1BTP )z̃. (1.11)

1See Calculus of Variations and Optimal Control Theory, Daniel Liberzon, Ch.6
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Problem 2. Write the following function to find the matrix P . Use scipy.

optimize.root. Since root takes in a vector and not a matrix, you will have
to reshape the matrix P before passing it in and after getting your result,
using np.reshape(16) and np.reshape((4,4)).

def find_P(A,B,Q,R):

'''
Parameters:

----------

A, B, Q : ndarrays of shape (4,4)

R : ndarray of shape (1,1)

Returns

-------

P : the matrix solution of the Riccati equation

'''
pass

Using the values

M, m = 23., 5.

l = 4.

q1, q2, q3, q4 = 1., 1., 1., 1.

r = 5.

compute the eigenvalues of A − BR−1BTP . Are any of the eigenvalues
positive? Consider differential equation (1.11) governing the optimal state
z̃. Using this value of P , will we necessarily have ˙̃z → 0?

Notice that we have no information on how many solutions (1.10) possesses. In
general there may be many solutions. We hope to find a unique solution P that is
stabilizing : the eigenvalues of A−BR−1BTP have negative real part. To find this
P , use the function solve_continuous_are from scipy.linalg. This function is designed
to solve the continuous algebraic Riccati equation.

Problem 3. Write the following function that implements the LQR solution
described earlier. For the IVP solver, you can use your own or you may use
the function ode from scipy.integrate.

def rickshaw(tv,X0,A, B, Q, R_inv, P):

'''
Parameters:

----------

tv : ndarray of time values, with shape (n+1,)

X0 :

A, B, Q : ndarrays of shape (4,4)

R_inv : ndarray of shape (1,1), inverse of R

P : ndarray of shape (4,4)

Returns
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P is found using scipy.optimize.root. P is found using solve_continuous_are.

Figure 1.3: The solutions of Problem 4.

-------

Z : ndarray of shape (n+1,4), the state vector at each time

U : ndarray of shape (n,), the control values

'''

Problem 4. Test the function made in Problem (3) with the following in-
puts:

M, m = 23., 5.

l = 4.

q1, q2, q3, q4 = 1., 1., 1., 1.

r = 10.

tf = 15

X0 = np.array([-1, -1, .1, -.2])

Use both scipy.optimize.root and solve_continuous_are to find the matrix P .
Compare your results. The results are plotted in Figure 1.3.

Problem 5. Consider the following inputs:

M, m = 23., 5.

l = 4.

q1, q2, q3, q4 = 1., 1., 1., 1.

r = 10.

tf = 60

X0 = np.array([-1, -1, .1, -.2])

Vary the entries of X0 responsible for θ(0) and θ̇(0) to determine the sensitivity
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of the control u to the initial conditions. What initial conditions lead to a
reasonable, physical control u?
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