
Lab 5

Linear Systems

Lab Objective: The fundamental problem of linear algebra is solving the lin-
ear system Ax = b, if it is even possible. There are many approaches to solving
this problem, each with di↵erent pros and cons. In this lab we implement the LU
decomposition and use it to solve square linear systems. We also introduce SciPy,
together with its libraries for linear algebra and working with sparse matrices.

Gaussian Elimination

The standard approach for solving the linear system Ax = b on paper is reducing
the augmented matrix [A | b] to row-echelon form (REF) via Gaussian elimination,
then using back substitution. The matrix is in REF when the leading non-zero term
in each row is the diagonal term, so the matrix is upper triangular.

At each step of the process, there are three possible operations: swapping two
rows, multiplying one row by a scalar value, or adding a scalar multiple of one row
to another. Many systems, like the one displayed below, can be reduced to REF
using only the third type of operation. First use multiples of the first row to get
zeros below the diagonal in the first column, then use a multiple of the second row
to get zeros below the diagonal in the second column.
2

4
1 1 1 1
1 4 2 3
4 7 8 9

3

5 �!

2

4
1 1 1 1
0 3 1 2
4 7 8 9

3

5 �!

2

4
1 1 1 1
0 3 1 2
0 3 4 5

3

5 �!

2

4
1 1 1 1
0 3 1 2
0 0 3 3

3

5

Each of these operations is mathematically equivalent to left-multiplying by a
type III elementary matrix, the identity with one non-diagonal non-zero term. If
row operation k corresponds to matrix E

k

, the following equation is E3E2E1A = U .
2

4
1 0 0
0 1 0
0 �1 1

3

5

2

4
1 0 0
0 1 0
�4 0 1

3

5

2

4
1 0 0
�1 1 0
0 0 1

3

5

2

4
1 1 1 1
1 4 2 3
4 7 8 9

3

5 =

2

4
1 1 1 1
0 3 1 2
0 0 3 3

3

5

However, matrix multiplication is an ine�cient way to implement row reduction.
Instead, modify the matrix in place (without making a copy), changing only those
entries that are a↵ected by each row operation.

65

66 Lab 5. Linear Systems

>>> import numpy as np

>>> A = np.array([[1, 1, 1, 1],

... [1, 4, 2, 3],

... [4, 7, 8, 9]], dtype=np.float)

Reduce the 0th column to zeros below the diagonal.

>>> A[1,0:] -= (A[1,0] / A[0,0]) * A[0]

>>> A[2,0:] -= (A[2,0] / A[0,0]) * A[0]

Reduce the 1st column to zeros below the diagonal.

>>> A[2,1:] -= (A[2,1] / A[1,1]) * A[1,1:]

>>> print(A)

[[1. 1. 1. 1.]

[0. 3. 1. 2.]

[0. 0. 3. 3.]]

Note that the final row operation modifies only part of the third row to avoid
spending the computation time of adding 0 to 0.

If a 0 appears on the main diagonal during any part of row reduction, the
approach given above tries to divide by 0. Swapping the current row with one below
it that does not have a 0 in the same column solves this problem. This is equivalent
to left-multiplying by a type II elementary matrix, also called a permutation matrix.

Problem 1. Write a function which reduces a square matrix A to REF. You
may assume that A is invertible and that a 0 will never appear on the main
diagonal (so only use type III row reductions, not type II). Avoid operating
on entries that you know will be 0 before and after a row operation.

Consider generating small random matrices as test cases with NumPy’s
random module (np.random.randint() may be particularly useful).

Achtung!

Gaussian elimination is not always numerically stable. Suppose that, due to
roundo↵ error, we have a matrix with a very small entry on the diagonal.

A =


10�15 1
�1 0

�

10�15 is essentially zero, but instead of swapping the first and second rows
to put the A in REF, a computer might multiply the first row by 1015 and
add it to the second row to eliminate the �1. The resulting matrix is far from
what we would expect on paper.


10�15 1
�1 0

�
�!


10�15 1
0 1015

�

67

Round-o↵ error can propagate through many steps in a calculation. NumPy’s
routines that employ row reduction use several tricks to minimize the impact
of round-o↵ errors, but beware that these tricks can’t fix every matrix.

The LU Decomposition

The LU decomposition of a square matrix A is a factorization A = LU where U is
the upper triangular REF of A and L is the lower triangular product of the type
III elementary matrices whose inverses reduce A to U . The LU decomposition of A
exists when A can be reduced to REF using only type III elementary matrices (no
row swaps). However, the rows of A can always be permuted in a way such that
the decomposition exists. If P is a permutation matrix encoding the appropriate
row swaps, then the decomposition PA = LU always exists.

Suppose A has an LU decomposition (not requiring row swaps). Then A can be
reduced to REF with k row operations, corresponding to left-multiplying the type
III elementary matrices E1, . . . , Ek

. Because there were no row swaps, each E
i

is
lower triangular, so each inverse E�1

i

is also lower triangular. Furthermore, since
the product of lower triangular matrices is lower triangular, L is lower triangular.

E
k

. . . E2E1A = U �! A = (E
k

. . . E2E1)
�1U

= E�1
1 E�1

2 . . . E�1
k

U

= LU

We can thus compute L by right-multiplying the identity by the matrices used to
reduce U . However, in this special situation, each right-multiplication only changes
one entry of L, so we can avoid matrix multiplication altogether. The entire process,
only slightly di↵erent than row reduction, is summarized below.

Algorithm 5.1

1: procedure LU Decomposition(A)
2: m,n shape(A) . Store the dimensions of A.
3: U copy(A) . Make a copy of A with np.copy().
4: L I

m

. The m⇥m identity matrix.
5: for j = 0 . . . n� 1 do

6: for i = j + 1 . . .m� 1 do

7: L
i,j

 U
i,j

/U
j,j

8: U
i,j: U

i,j: � L
i,j

U
j,j:

9: return L,U

Problem 2. Write a function that finds the LU decomposition of a square
matrix. You may assume the decomposition exists and requires no row swaps.

68 Lab 5. Linear Systems

Forward and Backward Substitution

If Ax = b and PA = LU , then LUx = PAx = Pb. This system can be solved
by first solving Ly = Pb, then Ux = y. Since L and U are both triangular,
these systems can be solved with backward and forward substitution. We can thus
compute the LU factorization of A once, then use substitution to e�ciently solve
Ax = b for various values of b.

Since the diagonal entries of L are all 1, the triangular system Ly = b has the
following form:

2

666664

1 0 0 · · · 0
l21 1 0 · · · 0
l31 l32 1 · · · 0
...

...
...

. . .
...

l
n1 l

n2 l
n3 · · · 1

3

777775

2

666664

y1
y2
y3
...
y
n

3

777775
=

2

666664

b1
b2
b3
...
b
n

3

777775

Matrix multiplication yields the following equations:

y1 = b1 y1 = b1

l21y1 + y2 = b2 y2 = b2 � l21y1

...
...

k�1X

j=1

l
kj

y
j

+ y
k

= b
k

y
k

= b
k

�
k�1X

j=1

l
kj

y
j

(5.1)

The triangular system Ux = b yields similar equations, but in reverse order:

2

666664

u11 u12 u13 · · · u1n

0 u22 u23 · · · u2n

0 0 u33 · · · u3n

...
...

...
. . .

...
0 0 0 · · · u

nn

3

777775

2

666664

x1

x2

x3

...
x
n

3

777775
=

2

666664

y1
y2
y3
...
y
n

3

777775

u
nn

x
n

= y
n

x
n

=
1

u
nn

y
n

u
n�1,n�1xn�1 + u

n�1,nxn

= y
n�1 x

n�1 =
1

u
n�1,n�1

(y
n�1 � u

n�1,nxn

)

...
...

nX

j=k

u
kj

x
j

= y
k

x
k

=
1

u
kk

0

@y
k

�
nX

j=k+1

u
kj

x
j

1

A (5.2)

69

Problem 3. Write a function that, given A and b, solves the square linear
system Ax = b. Use the function from Problem 2 to compute L and U , then
use Equations 5.1 and 5.2 to solve for y, then x. You may again assume that
there are no row swaps (so P = I in this case).

SciPy

SciPy is a powerful scientific computing library built upon NumPy. It includes high-
level tools for linear algebra, statistics, signal processing, integration, optimization,
machine learning, and more.

SciPy is typically imported with the convention import scipy as sp. However,
SciPy is set up in a way that requires its submodules to be imported separately.1

Linear Algebra

NumPy and SciPy both have a linear algebra module, each called linalg, but SciPy’s
module is the larger of the two. Some of SciPy’s common linalg functions are
listed below. See http://docs.scipy.org/doc/scipy/reference/linalg.html

for more documentation.

Function Returns
det() The determinant of a square matrix.
eig() The eigenvalues and eigenvectors of a square matrix.
inv() The inverse of an invertible matrix.

norm() The norm of a vector or matrix norm of a matrix.
solve() The solution to Ax = b (the system may not be square).

This library also includes routines for computing matrix decompositions.

>>> from scipy import linalg as la

Make a random matrix and a random vector.

>>> A = np.random.random((1000,1000))

>>> b = np.random.random(1000)

Compute the LU decomposition of A, including pivots.

>>> lu, piv = la.lu_factor(A)

Use the LU decomposition to solve Ax = b.

>>> x = la.lu_solve((lu,piv), b)

Check that the solution is legitimate.

>>> np.allclose(A.dot(x), b)

True

As with NumPy, SciPy’s routines are all highly optimized. However, some algo-
rithms are, by nature, faster than others.

1SciPy modules like linalg are really packages, which need to be initialized separately.

http://docs.scipy.org/doc/scipy/reference/linalg.html

70 Lab 5. Linear Systems

Problem 4. Write a function that times di↵erent scipy.linalg functions for
solving square linear systems.

For various values of n, generate a random n⇥n matrix A and a random
n⇥ 1 vector b using np.random.random(). Time how long it takes to solve the
system Ax = b with each of the following approaches:

1. Invert A with la.inv() and left-multiply the inverse to b.

2. Use la.solve().

3. Use la.lu_factor() and la.lu_solve() to solve the system with the LU
decomposition.

4. Use la.lu_factor() and la.lu_solve(), but only time la.lu_solve().

Plot the system size n versus the execution times. Use log scales if needed.

Note

Numerically inverting matrices is so costly that there is hardly ever a good
reason to do it. Use a specific solver, like la.lu_solve(), whenever possible.

Sparse Matrices

Large linear systems can have tens of thousands of parameters. Storing the corre-
sponding matrices in memory can be di�cult: a 100000 ⇥ 100000 system requires
around 40 GB to store in a NumPy array (4 bytes per entry ⇥ 1010 entries). This
is well beyond the amount of RAM in a normal laptop.

In applications where systems of this size arise, it is common that such matrices
are sparse, meaning that most of the entries are 0. SciPy’s sparse module provides
tools for e�ciently constructing and manipulating 1- and 2-D sparse matrices. A
sparse matrix only stores the nonzero values and the positions of these values. For
su�ciently sparse matrices, storing the matrix as a sparse matrix may only take
megabytes, rather than gigabytes.

For example, diagonal matrices are sparse. Storing an n⇥ n diagonal matrix in
the näıve way means storing n2 values in memory. It is almost always more e�cient
to instead store the diagonal entries in a 1-D array of n values. In addition to using
less storage space, this allows for much faster matrix operations: the standard
algorithm to multiply a matrix by a diagonal matrix involves n3 steps, but most
of these are multiplying by or adding 0. A smarter algorithm can accomplish the
same task much faster.

SciPy has seven sparse matrix types. Each type is optimized either for storing
sparse matrices whose nonzero entries follow certain patterns, or for performing
certain computations.

71

Name Description Advantages
bsr_matrix Block Sparse Row Specialized structure.
coo_matrix Coordinate Format Conversion among sparse formats.
csc_matrix Compressed Sparse Column Column-based operations and slicing.
csr_matrix Compressed Sparse Row Row-based operations and slicing.
dia_matrix Diagonal Storage Specialized structure.
dok_matrix Dictionary of Keys Element access, incremental construction.
lil_matrix Row-based Linked List Incremental construction.

Conversion to CSR or CSC format.

Creating Sparse Matrices

A regular, non-sparse matrix is called full or dense. Full matrices can be converted
to each of the sparse matrix formats listed above. However, it is more memory
e�cient to never create the full matrix in the first place. There are really three
di↵erent approaches for creating sparse matrices from scratch.

• Coordinate Format: When all of the nonzero values and their positions are
known, create the entire sparse matrix at once as a coo_matrix. All nonzero
values are stored as a location (or coordinate) and value. This format also
supports very fast conversion between the other sparse matrix types.

>>> from scipy import sparse

Define the rows, columns, and values separately.

>>> rows = np.array([0, 1, 0])

>>> cols = np.array([0, 1, 1])

>>> vals = np.array([3, 5, 2])

>>> A = sparse.coo_matrix((vals, (rows,cols)), shape=(3,3))

>>> print(A)

(0, 0) 3

(1, 1) 5

(0, 1) 2

The toarray() method casts the sparse matrix as a NumPy array.

However, using regular arrays forfeits all sparse-related optimizations.

>>> print(A.toarray())

[[3 2 0]

[0 5 0]

[0 0 0]]

• DOK and LIL Formats: If the matrix values and their locations are
not known a priori, construct the matrix incrementally with dok_matrix or
lil_matrix. Indicate the size of the matrix, then change individual values with
regular slicing syntax.

>>> B = sparse.lil_matrix((2,6))

>>> B[0,2] = 4

>>> B[1,3:] = 9

>>> print(B.toarray())

[[0. 0. 4. 0. 0. 0.]

[0. 0. 0. 9. 9. 9.]]

72 Lab 5. Linear Systems

• BSR and DIA Formats: When the matrix has a particular sparsity pattern,
such as nonzero blocks or diagonals, use bsr_matrix or dia_matrix. The functions
sparse.bmat() and sparse.diags() are convenient ways to create these structures.

Use sparse.bmat() to create a block matrix. Use 'None' for zero blocks.

>>> A = sparse.coo_matrix(np.ones((2,2)))

>>> B = sparse.coo_matrix(np.full((2,2), 2.))

>>> print(sparse.bmat([[A , None, A],

[None, B , None]], format='bsr').toarray())
[[1., 1., 0., 0., 1., 1.],

[1., 1., 0., 0., 1., 1.],

[0., 0., 2., 2., 0., 0.],

[0., 0., 2., 2., 0., 0.]]

Use sparse.diags() to create a matrix with diagonal entries.

>>> diagonals = [[1,2],[3,4,5],[6]] # List the diagonal entries.

>>> offsets = [-1 , 0 , 3] # Specify the diagonal they go on.

>>> print(sparse.diags(diagonals, offsets, shape=(3,4)).toarray())

[[3. 0. 0. 6.]

[1. 4. 0. 0.]

[0. 2. 5. 0.]]

If all of the diagonals have the same entry, specify the entry alone.

>>> print(sparse.diags([1,3,6], offsets, shape=(3,4)).toarray())

[[3. 0. 0. 6.]

[1. 3. 0. 0.]

[0. 1. 3. 0.]]

Note

A banded matrix is a square matrix whose only non-zero entries are on the
main diagonal and on some diagonals on either side. If the nonzero entries are
confined to the three central diagonals, the matrix is also called tri-diagonal.
Banded matrices arise naturally in many applications, including numerical
methods for solving di↵erential equations.

Problem 5. Write a function that accepts an integer n and returns a sparse
n⇥ n tri-diagonal array A with 2’s along the main diagonal and �1’s along
the first subdiagonal and the first superdiagonal.

A =

2

666664

2 �1 · · · 0 0
�1 2 · · · 0 0
...

. . .
. . .

. . .
...

0 0 · · · 2 �1
0 0 · · · �1 2

3

777775

73

Sparse Matrix Operations

Once a sparse matrix has been constructed, it should be converted to a csr_matrix or
csc_matrix with the matrix’s tocsr() or tocsc() method. The CSR and CSC formats
are optimized for row or column operations, respectively. To choose the correct
format to use, determine what direction the matrix will be traversed.

For example, in the matrix-matrix multiplication AB, A is traversed row-wise,
but B is traversed column-wise. Thus A should be converted to a csr_matrix and B
should be converted to a csc_matrix.

Initialize a sparse matrix incrementally as a lil_matrix.

>>> A = sparse.lil_matrix((10000,10000))

>>> for k in xrange(10000):

... A[np.random.randint(0,9999), np.random.randint(0,9999)] = k

...

>>> A

<10000x10000 sparse matrix of type '<type 'numpy.float64'>'
with 9999 stored elements in LInked List format>

Convert A to CSR and CSC formats to compute the matrix product AA.

>>> Acsr = A.tocsr()

>>> Acsc = A.tocsc()

>>> Acsr.dot(Acsc)

<10000x10000 sparse matrix of type '<type 'numpy.float64'>'
with 10142 stored elements in Compressed Sparse Row format>

Beware that row-based operations on a csc_matrix are very slow, and similarly,
column-based operations on a csr_matrix are very slow.

Achtung!

Many familiar NumPy operations have analogous routines in the sparse mod-
ule. These methods take advantage of the sparse structure of the matrices and
are, therefore, usually significantly faster. However, Scipy’s sparse matrices
behave a little di↵erently than NumPy arrays.

Operation numpy scipy.sparse

Component-wise Addition A + B A + B

Scalar Multiplication 2 * A 2 * A

Component-wise Multiplication A * B A.multiply(B)

Matrix Multiplication A.dot(B) A * B, A.dot(B)

Note in particular the di↵erence between A * B for NumPy arrays and SciPy
sparse matrices. Do not use np.dot() to try to multiply sparse matrices, as it
may treat the inputs incorrectly. The syntax A.dot(B) is safest in most cases.

Finally, SciPy has a linear algebra library specifically for sparse matrices, called
scipy.sparse.linalg. Like other SciPy modules, it must be imported specifically.

>>> from scipy.sparse import linalg as spla

74 Lab 5. Linear Systems

Problem 6. Write a function that times regular and sparse linear system
solvers.

For various values of n, generate the n⇥n matrix A described in Problem
5 and a random n⇥ 1 vector b. Time how long it takes to solve the system
Ax = b with each of the following approaches:

1. Convert A to CSR format, then use scipy.sparse.linalg.spsolve().

2. Convert A to a NumPy array, then use scipy.linalg.solve().

Plot the system size n versus the execution times. As always, use log
scales where appropriate and use a legend to label each line.

Achtung!

Because there are fast algorithms for solving a tri-diagonal linear system, you
may think that there are fast algorithms for inverting a tri-diagonal matrix.
In fact this is not true, and the inverse of a sparse matrix is usually not sparse.
There is rarely a good reason to invert a matrix, sparse or dense.

Note

One way to view a sparse matrix is to convert it to a NumPy array with the
toarray() method. If a matrix is to large to fit in memory as an array, it can
still be visualized with Matplotlib’s plt.spy(), which colors in the locations of
the non-zero entries of the matrix. Try the following code for visualizing a
simple banded matrix.

>>> from matplotlib import pyplot as plt

>>> A = sparse.diags([1, 2, 3, 4, 5], [-5000, -1000, 0, 1000, 5000],

... shape=(10000, 10000))

>>> plt.spy(A, markersize=1)

>>> plt.show()

See http://docs.scipy.org/doc/scipy/reference/sparse.html for additional
details on SciPy’s sparse module.

http://docs.scipy.org/doc/scipy/reference/sparse.html

75

Additional Material

Improvements on the LU Decomposition

Vectorization

Algorithm 5.1 uses two loops to compute the LU decomposition. With a little
vectorization, the process can be reduced to a single loop.

Algorithm 5.2

1: procedure Fast LU Decomposition(A)
2: m,n shape(A)
3: U copy(A)
4: L I

m

5: for k = 0 . . . n� 1 do

6: L
k+1:,k U

k+1:,k/Uk,k

7: U
k+1:,k: U

k+1:,k: � L
k+1:,kUT

k,k:

8: return L,U

Note that step 7 is an outer product, not the regular dot product (xyT instead
of the usual xTy). Use np.outer() instead of np.dot() to get the desired result.

Pivoting

Gaussian elimination iterates through the rows of a matrix, using the diagonal entry
x
k,k

of the matrix at the kth iteration to zero out all of the entries in the column
below x

k,k

(x
i,k

for i � k). This diagonal entry is called the pivot. Unfortunately,
Gaussian elimination, and hence the LU decomposition, can be very numerically
unstable if at any step the pivot is a very small number. Most professional row
reduction algorithms avoid this problem via partial pivoting.

The idea is to choose the largest number (in magnitude) possible to be the pivot
by swapping the pivot row2 with another row before operating on the matrix. For
example, the second and fourth rows of the following matrix are exchanged so that
the pivot is �6 instead of 2.

2

664

⇥ ⇥ ⇥ ⇥
0 2 ⇥ ⇥
0 4 ⇥ ⇥
0 �6 ⇥ ⇥

3

775 �!

2

664

⇥ ⇥ ⇥ ⇥
0 �6 ⇥ ⇥
0 4 ⇥ ⇥
0 2 ⇥ ⇥

3

775 �!

2

664

⇥ ⇥ ⇥ ⇥
0 �6 ⇥ ⇥
0 0 ⇥ ⇥
0 0 ⇥ ⇥

3

775

A row swap is equivalent to left-multiplying by a type II elementary matrix, also
called a permutation matrix.

2

664

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

3

775

2

664

⇥ ⇥ ⇥ ⇥
0 2 ⇥ ⇥
0 4 ⇥ ⇥
0 �6 ⇥ ⇥

3

775 =

2

664

⇥ ⇥ ⇥ ⇥
0 �6 ⇥ ⇥
0 4 ⇥ ⇥
0 2 ⇥ ⇥

3

775

2
Complete pivoting involves row and column swaps, but doing both operations is usually con-

sidered overkill.

76 Lab 5. Linear Systems

For the LU decomposition, if the permutation matrix at step k is P
k

, then
P = P

k

. . . P2P1 yields PA = LU . The complete algorithm is given below.

Algorithm 5.3

1: procedure LU Decomposition with Partial Pivoting(A)
2: m,n shape(A)
3: U copy(A)
4: L I

m

5: P [0, 1, . . . , n� 1] . See tip 2 below.
6: for k = 0 . . . n� 1 do

7: Select i � k that maximizes |U
i,k

|
8: U

k,k: $ U
i,k: . Swap the two rows.

9: L
k,:k $ L

i,:k . Swap the two rows.
10: P

k

$ P
i

. Swap the two entries.
11: L

k+1:,k U
k+1:,k/Uk,k

12: U
k+1:,k: U

k+1:,k: � L
k+1:,kUT

k,k:

13: return L,U, P

The following tips may be helpful for implementing this algorithm:

1. Since NumPy arrays are mutable, use np.copy() to reassign the rows of an
array simultaneously.

2. Instead of storing P as an n⇥n array, fancy indexing allows us to encode row
swaps in a 1-D array of length n. Initialize P as the array [0, 1, . . . , n]. After
performing a row swap on A, perform the same operations on P . Then the
matrix product PA will be the same as A[P].

>>> A = np.zeros(3) + np.vstack(np.arange(3))

>>> P = np.arange(3)

>>> print(A)

[[0. 0. 0.]

[1. 1. 1.]

[2. 2. 2.]]

Swap rows 1 and 2.

>>> A[1], A[2] = np.copy(A[2]), np.copy(A[1])

>>> P[1], P[2] = P[2], P[1]

>>> print(A) # A with the new row arrangement.

[[0. 0. 0.]

[2. 2. 2.]

[1. 1. 1.]]

>>> print(P) # The permutation of the rows.

[0 2 1]

>>> print(A[P]) # A with the original row arrangement.

[[0. 0. 0.]

[1. 1. 1.]

[2. 2. 2.]]

77

There are potential cases where even partial pivoting does not eliminate catas-
trophic numerical errors in Gaussian elimination, but the odds of having such an
amazingly poor matrix are essentially zero. The numerical analyst J.H. Wilkinson
captured the likelihood of encountering such a matrix in a natural application when
he said, “Anyone that unlucky has already been run over by a bus!”

In Place

The LU decomposition can be performed in place (overwriting the original matrix
A) by storing U on and above the main diagonal of the array and storing L below
it. The main diagonal of L does not need to be stored since all of its entries are
1. This format saves an entire array of memory, and is how scipy.linalg.lu_factor()

returns the factorization.

More Applications of the LU Decomposition

The LU decomposition can also be used to compute inverses and determinants.

• Inverse: (PA)�1 = (LU)�1 �! A�1P�1 = U�1L�1 �! LUA�1 = P .
Solve LUa

i

= p
i

with forward and backward substitution (as in Problem 3)
for every column p

i

of P . Then

A�1 =

2

4 a1 a2 · · · a
n

3

5 ,

the matrix where a
k

is the kth column.

• Determinant: det(A) = det(P�1LU) = det(L) det(U)
det(P) . The determinant of

a triangular matrix is the product of its diagonal entries. Since every diag-
onal entry of L is 1, det(L) = 1. Also, P is just a row permutation of the
identity matrix (which has determinant 1), and a single row swap negates the
determinant. Thus

det(A) = (�1)S
nY

i=1

u
ii

,

where S is the number of row swaps.

The Cholesky Decomposition

A square matrix A is called positive definite if zTAz > 0 for all nonzero vectors
z. In addition, A is called Hermitian if A = AH = AT. If A is Hermitian positive
definite, it has a Cholesky Decomposition A = UHU where U is upper triangular
with real, positive entries on the diagonal. This is the matrix equivalent to taking
the square root of a positive real number.

The Cholesky decomposition takes advantage of the conjugate symmetry of A to
simultaneously reduce the columns and rows of A to zeros (except for the diagonal).
It thus requires only half of the calculations and memory of the LU decomposition.
Furthermore, the algorithm is numerically stable, which means that round-o↵ errors

78 Lab 5. Linear Systems

do not propagate throughout the computation. Because of its e�ciency and stabil-
ity, this decomposition is used when possible to solve least squares, optimization,
and state estimation problems.

Algorithm 5.4

1: procedure Cholesky Decomposition(A)
2: U A . Copy A if desired.
3: for i = 0 . . . n� 1 do

4: for j = i+ 1 . . . n� 1 do

5: U
j,j: U

j,j: � U
i,j:Uij

/U
ii

6: U
i,i: U

i,i:/
p
U
ii

7: return U

As with the LU decomposition, SciPy’s linalg module has optimized routines,
la.cho_factor() and la.cho_solve(), for using the Cholesky decomposition.

