
Lab 6

Iterative Solvers

Lab Objective: Many real-world problems of the form Ax = b have tens of
thousands of parameters. Solving such systems with Gaussian elimination or matrix
factorizations could require trillions of floating point operations (FLOPs), which
is of course infeasible. Solutions of large systems must therefore be approximated
iteratively. In this lab, we implement three popular iterative methods for solving
large systems: Jacobi, Gauss-Seidel, and Successive Over-Relaxation.

Iterative Methods

The general idea behind any iterative method is to make an initial guess at the
solution to a problem, apply a few easy computations to better approximate the
solution, use that approximation as the new initial guess, and repeat until done.
Throughout this lab, we use the notation x(k) to denote the kth approximation
for the solution vector x and x(k)

i

to denote the ith component of x(k). With this
notation, every iterative method can be summarized as

x(k+1) = f(x(k)), (6.1)

where f is some function used to approximate the true solution x.

In the best case, the iteration converges to the true solution (x(k) ! x). In
the worst case, the iteration continues forever without approaching the solution.
Iterative methods therefore require carefully chosen stopping criteria to prevent
iterating forever. The general approach is to continue until the di↵erence between
two consecutive approximations is su�ciently small, and to iterate no more than a
specific number of times. More precisely, choose a very small ✏ > 0 and an integer
N 2 N, and update the approximation using Equation 6.1 until either

kx(k�1) � x(k)k < ✏ or k > N. (6.2)

The choices for ✏ and N are significant: a “large” ✏ (such as 10�6) produces a
less accurate result than a “small” ✏ (such 10�16), but demands less computations; a
small N (10) also potentially lowers accuracy, but detects and halts non-convergent
iterations sooner than with a large N (10,000).

79



80 Lab 6. Iterative Solvers

The Jacobi Method

The Jacobi Method is a simple but powerful method used for solving certain kinds
of large linear systems. The main idea is simple: solve for each variable in terms of
the others, then use the previous values to update each approximation. As a (very
small) example, consider the following 3⇥ 3 system.

2x1 � x3 = 3
�x1 + 3x2 + 2x3 = 3

+ x2 + 3x3 = �1

Solving the first equation for x1, the second for x2, and the third for x3 yields
the following.

x1 = 1
2 (3 + x3)

x2 = 1
3 (3 + x1 � 2x3)

x3 = 1
3 (�1� x2)

Now begin with an initial guess x(0) = [x(0)
1 , x(0)

2 , x(0)
3 ]T = [0, 0, 0]T. To compute

the first approximation x(1), use the entries of x(0) as the variables on the right side
of the previous equation.

x(1)
1 = 1

2 (3 + x(0)
3 ) = 1

2 (3 + 0) = 3
2

x(1)
2 = 1

3 (3 + x(0)
1 � 2x(0)

3 ) = 1
3 (3 + 0� 0) = 1

x(1)
3 = 1

3 (�1� x(0)
2 ) = 1

3 (�1� 0) = � 1
3

So x(1) = [ 32 , 1,�
1
3 ]

T. Computing x(2) is similar.

x(2)
1 = 1

2 (3 + x(1)
3 ) = 1

2 (3�
1
3 ) = 4

3

x(2)
2 = 1

3 (3 + x(1)
1 � 2x(1)

3 ) = 1
3 (3 +

3
2 + 2

3 ) = 31
18

x(2)
3 = 1

3 (�1� x(1)
2 ) = 1

3 (�1� 1) = � 2
3

The process is repeated until at least one of the two stopping criteria in Equation
6.2 is met. For this particular problem, convergence to 8 decimal places (✏ = 10�8)
is reached in 29 iterations.

x(k)
1 x(k)

2 x(k)
3

x(0) 0 0 0
x(1) 1.5 1 -0.33333
x(2) 1.33333333 1.72222222 -0.66666667
x(3) 1.16666667 1.88888889 -0.90740741
x(4) 1.04629630 1.99382716 -0.96296296
...

...
...

...
x(28) 0.99999999 2.00000001 -0.99999999
x(29) 1 2 -1



81

Matrix Representation

The iterative steps performed above can be expressed in matrix form. First, de-
compose A into its diagonal entries, its entries below the diagonal, and its entries
above the diagonal, as A = D + L+ U .

2

6664

a11 0 . . . 0
0 a22 . . . 0
...

...
. . .

...
0 0 . . . a

nn

3

7775

2

6664

0 0 . . . 0
a21 0 . . . 0
...

. . .
. . .

...
a
n1 . . . a

n,n�1 0

3

7775

2

66664

0 a12 . . . a1n

0 0
. . .

...
...

...
. . . a

n�1,n

0 0 . . . 0

3

77775

D L U

With this decomposition, we solve for x in the following way.

Ax = b

(D + L+ U)x = b

Dx = �(L+ U)x+ b

x = D�1(�(L+ U)x+ b)

Now using x(k) as the variables on the right side of the equation to produce
x(k+1) on the left, and noting that L+ U = A�D, we have the following.

x(k+1) = D�1(�(A�D)x(k) + b)

= D�1(Dx(k) �Ax(k) + b)

= x(k) +D�1(b�Ax(k)) (6.3)

There is a potential problem with Equation 6.3: calculating a matrix inverse is
the cardinal sin of numerical linear algebra, yet the equation contains D�1. How-
ever, since D is a diagonal matrix, D�1 is also diagonal, and is easy to compute.

D�1 =

2

6664

1
a11

0 . . . 0
0 1

a22
. . . 0

...
...

. . .
...

0 0 . . . 1
ann

3

7775

Because of this, the Jacobi method requires that A have nonzero diagonal entries.

The diagonal D can be represented by the 1-dimensional array d of the diagonal
entries. Then the matrix multiplication Dx is equivalent to the component-wise
vector multiplication d ⇤ x = x ⇤ d. Likewise, the matrix multiplication D�1x is
equivalent to the component-wise “vector division” x/d.

>>> import numpy as np

>>> D = np.array([[2,0],[0,16]]) # Let D be a diagonal matrix.

>>> d = np.diag(D) # Extract the diagonal as a 1-D array.

>>> x = np.random.random(2)

>>> np.allclose(D.dot(x), d*x)

True



82 Lab 6. Iterative Solvers

Problem 1. Write a function that accepts a matrix A, a vector b, a con-
vergence tolerance ✏, and a maximum number of iterations N . Implement
the Jacobi method using Equation 6.3, returning the approximate solution
to the equation Ax = b.

Run the iteration until kx(k�1)�x(k)k1 < ✏, and only iterate at most N
times. Avoid using la.inv() to calculate D�1, but use la.norm() to calculate
the vector 1-norm kxk1 = sup |x

i

|.

>>> from scipy import linalg as la

>>> x = np.random.random(10)

>>> la.norm(x, ord=np.inf) # Use la.norm() for ||x||.

0.74623726404168045

>>> np.max(np.abs(x)) # Use pure NumPy for ||x||.

0.74623726404168045

Your function should be robust enough to accept systems of any size. To
test your function, use the following function to generate an n⇥ n matrix A
for which the Jacobi method is guaranteed to converge.

def diag_dom(n, num_entries=None):

"""Generate a strictly diagonally dominant nxn matrix.

Inputs:

n (int): the dimension of the system.

num_entries (int): the number of nonzero values

Defaults to n^(3/2)-n.

Returns:

A ((n,n) ndarray): An nxn strictly diagonally dominant matrix.

"""

if num_entries is None:

num_entries = int(n**1.5) - n

A = np.zeros((n,n))

rows = np.random.choice(np.arange(0,n), size=num_entries)

cols = np.random.choice(np.arange(0,n), size=num_entries)

data = np.random.randint(-4, 4, size=num_entries)

for i in xrange(num_entries):

A[rows[i], cols[i]] = data[i]

for i in xrange(n):

A[i,i] = np.sum(np.abs(A[i])) + 1

return A

Generate a random b with np.random.random(). Run the iteration, then
check that Ax(k) and b are close using np.allclose().

Also test your function on random n ⇥ n matrices. If the iteration is
non-convergent, the successive approximations will have increasingly large
entries.



83

Convergence

Most iterative methods only converge under certain conditions. For the Jacobi
method, convergence mostly depends on the nature of the matrix A. If the entries
a
ij

of A satisfy the property

|a
ii

| >
X

j 6=i

|a
ij

| for all i = 1, 2, . . . , n,

then A is called strictly diagonally dominant (for example, diag_dom() in Problem 1
generates a strictly diagonally dominant n⇥ n matrix). If this is the case, then the
Jacobi method always converges, regardless of the initial guess x0.1 Other iterative
methods, such as Newton’s method, depend mostly on the initial guess.

There are a few ways to determine whether or not an iterative method is con-
verging. For example, since the approximation x(k) should satisfy Ax(k) ⇡ b, the
normed di↵erence kAx(k) � bk1 should be small. This value is called the absolute
error of the approximation. If the iterative method converges, the absolute error
should decrease to ✏.

Problem 2. Modify your Jacobi method function in the following ways:

1. Add a keyword argument called plot, defaulting to False.

2. Keep track of the absolute error kAx(k) � bk1 of the approximation
for each value of k.

3. If plot is True, produce a lin-log plot the error against iteration count
(use plt.semilogy() instead of plt.plot()). Return the approximate so-
lution x even if plot is True.

If the iteration converges, your plot should resemble the following figure.

1Although this seems like a strong requirement, most real-world linear systems can be repre-
sented by strictly diagonally dominant matrices.



84 Lab 6. Iterative Solvers

The Gauss-Seidel Method

The Gauss-Seidel method is essentially a slight modification of the Jacobi method.
The main di↵erence is that in Gauss-Seidel, new information is used immediately.
Consider the same system as in the previous section.

2x1 � x3 = 3
�x1 + 3x2 + 2x3 = 3

+ x2 + 3x3 = �1

As with the Jacobi method, solve for x1 in the first equation, x2 in the second
equation, and x3 in the third equation.

x1 = 1
2 (3 + x3)

x2 = 1
3 (3 + x1 � 2x3)

x3 = 1
3 (�1� x2)

Use x(0) to compute x(1)
1 in the first equation.

x(1)
1 =

1

2
(3 + x(0)

3 ) =
1

2
(3 + 0) =

3

2

Now, however, use the updated value of x(1)
1 in the calculation of x(1)

2 .

x(1)
2 =

1

3
(3 + x(1)

1 � 2x(0)
3 ) =

1

3
(3 +

3

2
� 0) =

3

2

Likewise, use the updated values of x(1)
1 and x(1)

2 to calculate x(1)
3 .

x(1)
3 =

1

3
(�1� x(1)

2 ) =
1

3
(�1� 3

2
) = �5

6

This process of using calculated information immediately is called forward sub-
stitution, and causes the algorithm to (generally) converge much faster.

x(k)
1 x(k)

2 x(k)
3

x(0) 0 0 0
x(1) 1.5 1.5 -0.833333
x(2) 1.08333333 1.91666667 -0.97222222
x(3) 1.01388889 1.98611111 -0.99537037
x(4) 1.00231481 1.99768519 -0.9992284
...

...
...

...
x(11) 1.00000001 1.99999999 -1
x(12) 1 2 -1

Notice that Gauss-Seidel converged in less than half as many iterations.



85

Implementation

Because Gauss-Seidel updates only one element of the solution vector at a time, the
iteration cannot be summarized by a single matrix equation. Instead, the process
is most generally described by the following equation.

x(k+1)
i

=
1

a
ii

0

@b
i

�
X

j<i

a
ij

x(k)
j

�
X

j>i

a
ij

x(k)
j

1

A (6.4)

Let A
i

be the ith row of A. The two sums closely resemble the regular vector
product of A

i

and x(k) without the ith term a
ii

x(k)
i

. This gives a simplification.

x(k+1)
i

=
1

a
ii

⇣
b
i

�AT
i

x(k) + a
ii

x(k)
i

⌘

= x(k)
i

+
1

a
ii

⇣
b
i

�AT
i

x(k)
⌘

(6.5)

One sweep through all the entries of x completes one iteration.

Problem 3. Write a function that accepts a matrix A, a vector b, a conver-
gence tolerance ✏, a maximum number of iterations N , and a keyword argu-
ment plot that defaults to False. Implement the Gauss-Seidel method using
Equation 6.5, returning the approximate solution to the equation Ax = b.

Use the same stopping criterion as in Problem 1. Also keep track of the
absolute errors of the iteration, as in Problem 2. If plot is True, plot the error
against iteration count. Use diag_dom() to generate test cases.

Achtung!

Since the Gauss-Seidel algorithm operates on the approximation vector
in place (modifying it one entry at a time), the previous approximation
x(k�1) must be stored at the beginning of the kth iteration in order
to calculate kx(k�1) � x(k)k1. Additionally, since NumPy arrays are
mutable, the past iteration must be stored as a copy.

>>> x0 = np.random.random(5) # Generate a random vector.

>>> x1 = x0 # Attempt to make a copy.

>>> x1[3] = 1000 # Modify the "copy" in place.

>>> np.allclose(x0, x1) # But x0 was also changed!

True

# Instead, make a copy of x0 when creating x1.

>>> x0 = np.copy(x1) # Make a copy.

>>> x1[3] = -1000

>>> np.allclose(x0, x1)

False



86 Lab 6. Iterative Solvers

Convergence

Whether or not the Gauss-Seidel converges or not also depends on the nature of
A. If all of the eigenvalues of A are positive, A is called positive definite. If A
is positive definite or if it is strictly diagonally dominant, then the Gauss-Seidel
method converges regardless of the initial guess x(0).

Problem 4. The Gauss-Seidel method is faster than the standard system
solver used by la.solve() if the system is su�ciently large and su�ciently
sparse. For each vale of n = 5, 6, . . . , 11, generate a random 2n⇥2n matrix
A using diag_dom() and a random 2n vector b. Time how long it takes to
solve Ax = b using your Gauss-Seidel function from Problem 3, and how
long it takes to solve using la.solve().

Plot the times against the system size. Use log scales if appropriate.

Solving Sparse Systems Iteratively

Iterative solvers are best suited for solving very large sparse systems. However,
using the Gauss-Seidel method on sparse matrices requires translating code from
NumPy to scipy.sparse. The algorithm is the same, but there are some functions
that are named di↵erently between these two packages.

Problem 5. Write a new function that accepts a sparse matrix A, a vec-
tor b, a convergence tolerance ✏, and a maximum number of iterations N
(plotting the convergence is not required for this problem). Implement the
Gauss-Seidel method using Equation 6.5, returning the approximate solution
to the equation Ax = b. Use the usual stopping criterion.

The Gauss-Seidel method requires extracting the rows A
i

from the matrix
A and computing AT

i

x. There are many ways to do this that cause some
fairly serious runtime issues, so we provide the code for this specific portion
of the algorithm.

# Slice the i-th row of A and dot product the vector x.

rowstart = A.indptr[i]

rowend = A.indptr[i+1]

Aix = np.dot(A.data[rowstart:rowend], x[A.indices[rowstart:rowend]])

To test your function, cast the result of diag_dom() as a sparse matrix.

from scipy import sparse

>>> A = sparse.csr_matrix(diag_dom(50000))

>>> b = np.random.random(50000)



87

Successive Over-Relaxation (SOR)

Some systems meet the requirements for convergence with the Gauss-Seidel method,
but that do not converge very quickly. A slightly altered version of the Gauss-Seidel
method, called Successive Over-Relaxation, can result in faster convergence. This
is achieved by introducing a relaxation factor, !. The iterative equation for Gauss-
Seidel, Equation 6.4 becomes the following.

x(k+1)
i

= (1� !)x(k)
i

+
!

a
ii

0

@b
i

�
X

j<i

a
ij

x(k)
j

�
X

j>i

a
ij

x(k)
j

1

A

Simplifying the equation results in the following.

x(k+1)
i

= x(k)
i

+
!

a
ii

⇣
b
i

�AT
i

x(k)
⌘

(6.6)

Note that when ! = 1, Successive Over-Relaxation reduces to Gauss-Seidel.

Problem 6. Write a function that accepts a sparse matrix A, a vector b, a
convergence tolerance ✏, and a maximum number of iterations N . Implement
Successive Over-Relaxation using Equation 6.6, returning the approximate
solution to the equation Ax = b. Use the usual stopping criterion.
(Hint: this requires changing only one line of code from the sparse Gauss-
Seidel function.)

Finite Di↵erence Method

Laplace’s equation is an important partial di↵erential equation that arises often
in both pure and applied mathematics. In two dimensions, the equation has the
following form.

@2u

@x2
+

@2u

@y2
= f(x, y) (6.7)

Laplace’s equation can be used to model heat flow. Consider a square metal plate
where the top and bottom sides are fixed at 0� Celsius and the left and right sides
are fixed at 100� Celsius. Given these boundary conditions, we want to describe
how heat di↵uses through the rest of the plate. If f(x, y) = 0, then the solution to
Laplace’s equation describes the plate when it is in a steady state, meaning that the
heat at a given part of the plate no longer changes with time.

It is possible to solve Equation 6.7 analytically when f(x, y) = 0. Instead,
however, we use a finite di↵erence method to solve the problem numerically. To
begin, we impose a discrete, square grid on the plate (see Figure 6.1). Denote the
points on the grid by u

i,j

. Then the interior points of the grid can be numerically
approximated as follows:

@2u
i,j

@x2
+

@2u
i,j

@y2
⇡ 1

h2
(�4u

i,j

+ u
i+1,j + u

i�1,j + u
i,j+1 + u

i,j�1) , (6.8)



88 Lab 6. Iterative Solvers

where h is the distance between u
i,j

and u
i+1,j (and between u

i,j

and u
i,j+1).2

Figure 6.1: On the left, an example of a 6 ⇥ 6 grid where the red dots are hot
boundary zones and the blue dots are cold boundary zones. On the right, the green
dots are the neighbors of the interior black dot that are used to approximate the
heat at the black dot.

This problem can be formulated as a linear system. Suppose the grid has exactly
(n+2)⇥(n+2) entries. Then the interior of the grid is n⇥n, and can be flattened into
an n2 ⇥ 1 vector u. The entire first row goes first, then the second row, proceeding
to the nth row.

u = [u1,1, u1,2, · · · , u1,n, u2,1, u2,2, · · · , u2,n . . . , u
n,n

]T

From Equations 6.7 and 6.8 with f(x, y) = 0, we have the following for an interior
point u

i,j

:

� 4u
i,j

+ u
i+1,j + u

i�1,j + u
i,j+1 + u

i,j�1 = 0. (6.9)

If any of the neighbors to u
i,j

is a boundary point on the grid, its value is already
determined. For example, for u3,1, the neighbor u3,0 = 100, so

�4u3,1 + u4,1 + u2,1 + u3,2 = �100.

The constants on the right side of the equation become the n2 ⇥ 1 vector b.

For example, writing Equation 6.9 for the 9 interior points of the grid in Figure

2The derivation of Equation 6.8 will be studied in the lab on numerical di↵erentiation.



89

6.1 result the a 9⇥ 9 system, Au = b.

2

66666666666664

�4 1 0 1 0 0 0 0 0
1 �4 1 0 1 0 0 0 0
0 1 �4 0 0 1 0 0 0
1 0 0 �4 1 0 1 0 0
0 1 0 1 �4 1 0 1 0
0 0 1 0 1 �4 0 0 0
0 0 0 1 0 0 �4 1 0
0 0 0 0 1 0 1 �4 1
0 0 0 0 0 1 0 1 �4

3

77777777777775

2

66666666666664

u1,1

u1,2

u1,3

u2,1

u2,2

u2,3

u3,1

u3,2

u3,3

3

77777777777775

=

2

66666666666664

�100
0

�100
�100
0

�100
�100
0

�100

3

77777777777775

More generally, for any positive integer n, the corresponding system Au = b can
be expressed as follows.

A =

2

6666664

B1 I
I B2 I

I
. . .

. . .
. . .

. . . I
I B

n

3

7777775
, B

i

=

2

6666664

�4 1
1 �4 1

1
. . .

. . .
. . .

. . . 1
1 �4

3

7777775
,

where each B
i

is n⇥ n. All nonzero entries of b correspond to interior points that
touch the left or right boundaries (since the top and bottom boundaries are held
constant at 0).

Problem 7. Write a function that accepts an integer n for the number of
interior grid points. Return the corresponding sparse matrix A and NumPy
array b.
(Hint: Consider using scipy.sparse.block_diag and the setdiag() method of
scipy sparse matrices for dynamically creating the matrix A.)

Problem 8. To demonstrate how convergence is a↵ected by the value of ! in
SOR, time your function from Problem 6 with ! = 1, 1.05, 1.1, . . . , 1.9, 1.95
using the A and b generated by problem 7 with n = 20. Plot the times as a
function of !.

Note that the matrix A is not strictly diagonally dominant. However, A is
positive definite, so the algorithm will converge. Unfortunately, convergence
for these kinds of systems usually require more iterations than for strictly
diagonally dominant systems. Therefore, set tol=1e-2 and maxiters = 1000 on
the SOR function.



90 Lab 6. Iterative Solvers

Problem 9. Write a function that accepts an integer n. Use Problem 7
to generate the corresponding system Au = b, then solve the system us-
ing SciPy’s sparse system solver, scipy.sparse.linalg.spsolve() (spla.spsolve
() from the previous lab). Visualize the solution using a heatmap using np.

meshgrid() and plt.pcolormesh() ("seismic" is a good color map in this case).
This shows the distribution of heat over the hot plate after it has reached its
steady state. Note that the solution vector u must be reshaped to properly
visualize the result.


