
Lab 10

The SVD and Image
Compression

Lab Objective: Learn how to compute the compact SVD. Explore the SVD as a
method of matrix approximation, and use it to perform image compression.

The Singular Value Decomposition or SVD is a matrix decomposition that is
widely used in both theoretical and applied mathematics. Originally discovered by
theoretical mathematicians, it is a canonical way to decompose a matrix. Its practi-
cal use became apparent later on when Erhard Schmidt showed that the SVD could
be a computational tool for providing low-rank matrix approximations. Modern de-
velopments continue to confirm the importance of the SVD in both computational
and theoretical applications.

Computing the SVD

The Singular Value Decomposition decomposes an m⇥ n matrix A into the form

A = U⌃V H

where U and V are square and unitary of sizes m and n respectively, and ⌃ is
diagonal and of size m ⇥ n. The values along the diagonal of ⌃ are called the
singular values of A. These are also the square roots of the eigenvalues of AHA.
Commonly the singular values are listed in decreasing order. Thus we have

⌃ = diag(�1,�2, . . . ,�n

)

where �1 � �2 � . . . � �
n

� 0 are the singular values of A.

If A is of rank r, then A has exactly r nonzero singular values. The first r
columns of U span the range of A, and the last n� r columns span the null space
of AH. Likewise, the first r columns of V span the range of AH and the last m� r
span the null space of A.

For a more in-depth definition and proof that the SVD exists for every matrix,
refer to the section on the SVD in the text. Here we will focus on computing the
SVD.

First, we define two modifications of the regular SVD. In the compact SVD, we
only keep the r nonzero singular values. Only r column vectors of U and r row
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vectors of V H, corresponding to the r singular values, are calculated. The compact
SVD takes the form A = U

r

⌃
r

V H
r

where U
r

is m⇥ r, ⌃
r

is r⇥ r and diagonal, and
V H
r

is r⇥n. Although we drop the decompositions of the nullspaces, by calculating
U1⌃1V H

1 we can still recover the full matrix A.

The truncated SVD is similar to the compact SVD, but instead of keeping all the
nonzero singular values, we only keep the k largest. While this saves space, it means
that we cannot recover the whole matrix. Instead we end up with bA

k

= U
k

⌃
k

V H
k

where bA
k

is a rank k approximation of A, U
k

is m⇥k, ⌃ is k⇥k and diagonal, and
V H
k

is k ⇥ n.

The components of the compact or truncated SVD can be calculated as follows:

• The singular values of A, which form the diagonal of ⌃, are the square roots
of the eigenvalues of AHA. These are sorted in descending order. For the
compact SVD, keep all of the nonzero singular values. For the truncated
SVD, keep only the largest k.

• The columns of V are the eigenvectors of AHA, where the ith column V
i

matches the ith singular value.

• The columns of U are U
i

= 1
�i
AV

i

.

Problem 1. Write a function truncated_svd that accepts a matrix A and an
optional integer k = None. If k is None, calculate the compact SVD. If k is
an integer, calculate the truncated SVD, keeping only the k largest singular
values. (Note: if there are fewer than k nonzero singular values, the truncated
SVD will come out the same as the compact SVD.) Since the only di↵erence
between these two processes is the number of singular values we keep, we
only need to write one function.

Here’s an outline to follow:

1. Find the eigenvalues and eigenvectors of AHA.

2. Find the singular values of A. Keep only the greatest k, and discard
any that are equal to zero.

3. Calculate V .

4. Calculate U .

Return U, the diagonal of ⌃, and V. Check your function by calculating
the compact SVD and seeing if U⌃V H = A using np.allclose().

Hint: When calculating the SVD, you will need to sort the eigenvalues
while keeping track of their associated eigenvectors. Consider using the func-
tion np.argsort for keeping the eigenvalues and eigenvectors in the same order
while sorting.
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(a) The unit circle, S, with two unit vectors. (b) V H
S

(c) ⌃V H
S (d) U⌃V H

S

Figure 10.1: Each step in transforming the unit circle and two unit vectors using
the matrix A.

Note

In practice, calculating AHA in order to find its eigenvalues is unstable. We
use this method here because it is mathematically the simplest. However,
industrial SVD solvers use di↵erent methods that avoid computing AHA.

Visualizing the SVD

Recall that a matrix is a way to express a linear transformation. An m⇥ n matrix
defines a linear transformation that sends points from Rn to Rm.

Intuitively, the SVD can be thought of as breaking a linear transformation into
more basic steps. The SVD decomposes a given matrix into two rotations and a
scaling. V H represents a rotation, ⌃ represents a rescaling along the principal axes,
and U represents another rotation.



130 Lab 10. SVD

Problem 2. In this problem we will use the SVD to visualize how the matrix

A =


3 1
1 3

�

acts on points in R2. Given a set of points S in R2, we can calculate the
transformation AS in steps by using the SVD A = U⌃V H.

Specifically, let S be a set of points on the unit circle. To generate the
x- and y-coordinates of S, recall the equation for the unit circle in polar
coordinates:

x = cos(✓) y = sin(✓),

where ✓ 2 [0, 2⇡].

Plot four separate subplots to demonstrate each step of the transforma-
tion, plotting S, V HS, ⌃V HS, then U⌃V H. Do the same for the standard
basis vectors e1 = [1, 0]T and e2 = [0, 1]T. Your solution should look similar
to Figure 10.1.
(Hint: Force the plot to use the same scale on each of the axes with plt.axis

("equal"). Otherwise, the circle will appear elliptical.)

The SVD and Data Compression

We now turn to computational uses of the SVD. We will explore how the SVD is
useful for matrix approximations, and use it to compress images.

Low-Rank Matrix Approximation

If the rank r of a matrix A is significantly smaller than its dimensions, the compact
SVD o↵ers a way to store A with less memory. Storing an m ⇥ n matrix requires
storing mn values. By decomposing the original matrix into the compact SVD, U

r

,
⌃

r

and V
r

together require mr+ r+ nr values. This is an e�cient storage method
if r is much smaller than both m and n. For example, suppose m = 100, n = 200
and r = 20. Then the original matrix would require storing 20, 000 values, whereas
the compact SVD only requires storing 6020.

The truncated SVD allows even greater e�ciency. By only keeping the first
k singular values, we can create an approximation bA

k

= U
k

⌃
k

V H
k

. This requires
storing only mk + k + nk values. As we make k small, we eventually require very
little storage. This comes at the cost of losing information from the original matrix.

The beauty of the SVD is that it makes it easy to only keep the information that
is most important. Larger singular values correspond to columns of U and V that
contain more information, so dropping the smallest singular values retains as much
information as possible. In mathematical terms, given a matrix A and its rank-
k truncated SVD approximation bA

k

= U
k

⌃
k

V H
k

, the matrix bA
k

is the best rank k
approximation to A (with respect to the induced 2-norm and Frobenius norm). This
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is a very significant concept in applied mathematics, appearing in areas including
signal processing, statistics, semantic indexing, and control theory.

Implementation

We can use SciPy’s linear algebra module to create low-rank SVD approximations
or a given matrix. The code below computes the SVD of A.

>>> import numpy as np

>>> import scipy.linalg as la

>>> A = np.array([[1,1,3,4], [5,4,3,7], [9,10,10,12], [13,14,15,16],  -
[17,18,19,20]])

>>> U,s,Vh = la.svd(A, full_matrices=False)

In the last line of code, we included the keyword argument full_matrices=False to
calculate the compact SVD rather than the full SVD. The arrays U and Vh correspond
to the matrices U

r

and V H
r

discussed earlier. The array s gives the nonzero singular
values of the matrix A, and we can find the rank of A by inspecting the number of
entries in s (here we have a rank 4 matrix).

Next, we calculate a rank 3 approximation. We take the first three singular
values, first three columns of U, and first three rows of Vh. We omit the last singular
value from the calculation along with the last column of U and last row of Vh.

>>> S = np.diag(s[:3])

>>> Ahat = U[:,:3].dot(S).dot(Vh[:3,:])

>>> la.norm(A-Ahat)

Note that bA is “close” to the original matrix A, but that its rank is 3 instead of 4.

Problem 3. Write a function svd_approx that takes as input a matrix A and
a positive integer k and returns the best rank k approximation to A (with
respect to the induced 2-norm and Frobenius norm). Use scipy.linalg.svd.

Error of Low-Rank Approximations

Recall that the error between the best rank s approximation cA
s

of A with respect
to the induced 2-norm is given by

kA� cA
s

k2 = �
s+1,

where �
s+1 is the (s + 1)-th singular value of A. (See the proof of the Schmidt-

Eckard-Young-Mirsky theorem in the text).

This o↵ers a way to approximate a matrix within an error tolerance: choose the
truncated SVD approximation such that the largest discarded singular value is less
than the error tolerance.
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Problem 4. Using scipy.linalg.svd, write a function lowest_rank_approx that
takes as input a matrix A and a positive number e and returns the lowest
rank approximation of A with error less than e (with respect to the induced
2-norm). You should only calculate the SVD once.

Application to Image Compression

Sometimes there is not enough available bandwidth to transmit a full resolution
photograph. Suppose you need to transmit an image from a remote location. You
might aim to reduce the amount of data being sent, while also minimizing the loss
of detail in the image.

This can be done using the SVD. An image is just a matrix of pixel values, which
means it has a singular value decomposition. Computing and sending a low-rank
SVD approximation of the image can considerably reduce the amount of data sent,
while retaining a high level of image detail. Additionally, successive levels of detail
can be sent after the inital low-rank approximation by sending additional singular
values and their corresponding columns of V and U.

Examining the singular values of an image gives us an idea of how low-rank the
approximation can be. Figure 10.2 presents an image and a log plot of its singular
values from greatest to least. The plot in 10.2b is typical for a photograph—the
singular values start out large but drop o↵ rapidly. In this rank 670 image, 624
of the singular values are 50 or more times smaller than the largest singular value.
By discarding these relatively small singular values, we can retain all but the finest
image details, while storing only a rank 46 image! This is a huge reduction in data
size.

Figure 10.3 shows several low-rank approximations of the image in Figure 10.2a.
Even at a low rank the image is recognizable. By rank 40, the approximation visibly
di↵ers very little from the original.

The following code demonstrates how to use plt.imread and plt.imshow to read in
an image, convert it to black and white, and show it. The function from Problem
3 can then be used to calculate an approximation of X.

>>> import matplotlib.pyplot as plt

>>> # Take only one layer (layer 0) of the image

>>> X = plt.imread('hubble_image.jpg')[:,:,0].astype(float)
% >>> X.nbytes #number of bytes needed to store X <---- this seems  -

superfluous

>>> plt.imshow(X, cmap="gray")

>>> plt.show()

Problem 5. Using the svd_approx function from Problem 3, write a function
compress_img that accepts two parameters filename and k. The function should
plot the original image and the best rank k approximation of the original
image.
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(a) NGC 3603 (Hubble Space Telescope).

(b) Singular values from greatest to smallest

on a log scale

Figure 10.2: An image and its singular values.

While svd_approx worked for grayscale images, the compress_img function
should work on color images. You may split the image into its three RGB
layers and approximate each layer separately, then recombine them. Test
your function on hubble_image.jpg Your output should be similar to Figure
10.4.

Hints:

• Sometimes plt.imshow does not behave as expected when being passed
RGB values between 0 and 255. It behaves much better when being
passed values between 0 and 1.

• Since the SVD provides an approximation, it is possible that the SVD
will generate values slightly outside the valid range of RGB values. To
fix this, use fancy indexing (as discussed in the NumPy and SciPy lab)
to set values greater than 1 to 1 and values less than 0 to 0.
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(a) Rank 1 (b) Rank 14

(c) Rank 27 (d) Rank 40

Figure 10.3: Di↵erent rank approximations for SVD-based compression. Notice
that higher rank is needed to resolve finer detail.

Figure 10.4: Correct output for the best rank 20 approximation.


