
Lab 11

Facial Recognition Using
Eigenfaces

Lab Objective: Use the singular value decomposition to implement a simple
facial recognition system.

Suppose we have a large database containing images of human faces. We would
like to identify people by comparing their pictures to those in the database. This
task is called facial recognition.

One way to automate the comparison process is know as the eigenfaces method.
As the name suggests, this method uses eigenvectors of matrices related to the
collection of face images. The method essentially projects face images to a low-
dimensional subspace, in a way that preserves their distinguishing characteristics.
Comparing the images in fewer dimensions is faster and allows us to store the images
using less data.

The idea of projecting to fewer dimensions is not unique to the eigenfaces
method. This method is an example of principal component analysis, where data
is compared based on its principal components in a lower-dimensional vector space.
Principal component analysis can be applied to many computing problems besides
facial recognition.

Load the Data

The first step is to obtain a dataset of face images. Recall that a digital image
may be stored as an m⇥ n array of pixels. In this lab, we will store the images as
mn-vectors by concatenating the rows of the m⇥ n arrays.

Problem 1. In this lab we will use the faces94 face image dataset found
at http://cswww.essex.ac.uk/mv/allfaces/faces94.html This problem
will make sure that you can load and display the images from the dataset.

1. Download the faces94 dataset from the link above and extract the files.
You should now have a directory named “faces94” which contains pho-
tographs of 153 people, organized into folders by person.

135

http://cswww.essex.ac.uk/mv/allfaces/faces94.html

136 Lab 11. Facial Recognition Using Eigenfaces

Figure 11.1: The mean face.

2. The function getFaces() is given in the appendix. It constructs a set of
face images by selecting exactly one face image for each person in the
directory. It should return an array whose columns are flattened face
images. Feel free to modify the given code. You may have to replace
the parameter "./faces94" with the location of the directory faces94 on
your machine.

Test this function to make sure it runs without errors. Check that the
return value F is a 36000 ⇥ 153 array. The columns of this array are
153 flattened face images of 153 di↵erent people.

3. Use plt.imshow() to display one of the faces. The original image dimen-
sions are 200 ⇥ 180. You may find it useful to write a helper function
that accepts a flattened image and displays it.

Shift By the Mean

The facial recognition algorithm is more robust if we first shift by the mean. When
we shift a set of data by the mean, the distinguishing features are exaggerated.
Therefore, in the context of facial recognition, shifting by the mean accentuates
the unique features of the face. Suppose we have a collection of k face images
represented as vectors f1, f2, . . . , fk of length mn. Define the mean face µ to be the
average of the f

i

:

µ =
1

k

kX

i=1

f
i

.

Problem 2.

The facial recognition method you will write in this lab will be structured
as a class. An outline of the FacialRec class is provided in the appendix. You
will write the methods of the class.

When initialized, the FacialRec object first loads the face images using

137

Figure 11.2: Three mean-shifted faces from the dataset.

getFaces and stores the result. The next step is to compute the mean face.

1. In your class definition, implement the method FacialRec.initMeanImage

(). Compute the mean face and store it as self.mu. This can be done
in one line of code using NumPy.

2. Display the mean face. Your result should match Figure 11.1.

For each i = 1, . . . , k, define f̄
i

:= f
i

� µ. The mean-shifted face vector f̄
i

is the
deviation of the i-th face from the mean, and thus captures the unique features of
the face. Now form the mn ⇥ k matrix F̄ whose columns are given by the mean-
shifted face vectors, i.e.

F̄ =
⇥
f̄1 f̄2 · · · f̄

k

⇤
.

Problem 3.

1. In your class definition, implement the method FacialRec.initDifferences

(). Compute F̄ and store it as self.Fbar. This can be done in one line
using array broadcasting.

2. Display one of the mean-shifted faces. The output should be similar to
the faces in Figure 11.2.

Project to a Subspace

Now suppose we are given a new face vector g. We first shift g by the mean of the
dataset, giving us ḡ = g�µ. The closest match to ḡ is the vector f̄

i

that minimizes
kḡ � f̄

i

k2. If there are k images in the dataset, we find this match by comparing ḡ

to every element of {f̄1, . . . f̄k}.
However, comparing the original face images pixel by pixel is computationally

expensive and ine�cient. The vectors f̄
i

and ḡ are length mn, which in our case

138 Lab 11. Facial Recognition Using Eigenfaces

equals 36000 and in practice may be many times larger. Computing the di↵erence
between face vectors of this length is time consuming, especially when the dataset
is very large. It also requires us to use mn values to store each face, which is an
ine�cient use of space. In addition, pixel by pixel comparison is not very robust to
small changes in individual pixels.

Instead, in order to store and compare our face vectors, we would like to represent
each one with fewer than mn values. We can do this by projecting to a subspace.
Mathematically, we want to choose s, s ⌧ mn, and project the face vectors to an
s-dimensional subspace of the original mn-dimensional space of images. We can
then use just s values to store each face in terms of the basis vectors of the new
subspace.

The “best” subspace to project to is the one that is closest in the least squares
sense (i.e., such that the sum of the squared errors between {f̄1, . . . f̄k} and their
projections is minimized). Let U⌃V T be an SVD of F̄ , with u

i

the columns of
U . As we will prove below, the s-dimensional subspace that minimizes the squared
error is the span of u1, . . . ,us

. Note that u1, . . . ,us

is an orthonormal basis for this
subspace.

The projection matrix is P
s

= U
s

UT

s

where U
s

= [u1 . . . u
s

]. This matrix
projects the original face vectors into the optimal s-dimensional subspace.

The Proof: SVD as a Least Squares Solution

Theorem 11.1. Let f1, . . . , fk be vectors on Rmn, and let F̄ = [f̄1 . . . f̄
k

]. Suppose
U⌃V T is an SVD for F̄ . Then the s-dimensional subspace that solves the least
squares problem for f1, . . . , fk is the span of the first s columns of U . If U

s

is the
first s columns of U , then the matrix U

s

UT

s

is the projection onto this subspace.

Proof. We seek a rank-s projection matrix P
s

so that
P

k

i=1 kPs

f̄
i

�f̄
i

k22 is minimized—
i.e., the sum of the squares of the “errors” is minimal when we project f̄

i

via P
s

.
But minimizing this quantity is the same as minimizing its square, which happens
to equal the Frobenius norm of P

s

F̄ � F̄ . Written mathematically,

inf
rank(Ps)=s

kX

i=1

kP
s

f̄
i

� f̄
i

k22 = inf
rank(Ps)=s

kX

i=1

kP
s

f̄
i

� f̄
i

k22

!2

= inf
rank(Ps)=s

kP
s

F̄ � F̄k
F

.

Now let U⌃V T be an SVD of F̄ with u
i

the columns of U , v
i

the columns of
V , and �

i

the singular values of F̄ . If P
s

=
P

s

i=1 ui

uT

i

, then

P
s

F̄ =

sX

i=1

u
i

uT

i

!0

@
kX

j=1

�
j

u
i

vT

i

1

A =
sX

i=1

kX

j=1

�
j

u
i

uT

i

u
j

vT

j

=
sX

i=1

kX

j=1

�
j

u
i

�
ij

vT

j

=
sX

i=1

�
i

u
i

vT

i

.

139

Figure 11.3: The top three eigenfaces.

In fact, the Schmidt-Eckart-Young-Mirsky Theorem from Lab 10 tells us that
X =

P
s

i=1 �i

u
i

vT

i

is exactly the rank-s matrix that minimizes kX � F̄k
F

. Since
P
s

F̄ will always have rank s or less, the projection P
s

=
P

s

i=1 ui

uT

i

is the one we
seek. If we let U

s

= [u1 . . . u
s

], then we may write P
s

= U
s

UT

s

. Notice that P
s

is
projection onto the subspace spanned by the columns of U

s

.

The s basis vectors u1, . . . ,us

are eigenvectors of F̄ F̄T . They also resemble face
images. Hence, they are commonly called the “eigenfaces.”

Problem 4.

1. In your class definition, implement the method FacialRec.initEigenfaces

().

Compute the SVD (scipy.linalg.svd() is a good implementation to use)
and store the array U containing the eigenfaces as its columns. Because
we will only use the first few columns of U, specify the keyword param-
eter full_matrices=False to compute only the compact SVD.

2. Plot the first eigenface (i.e. the first column of U). It should resemble
the first eigenface shown in Figure 11.3.

Change Basis

The projection matrix P
s

= U
s

UT

s

projects a face vector into the s-dimensional
subspace spanned by the eigenfaces, but still keeps it as a vector in Rmn. The
change-of-basis matrix UT

s

both projects the face vector and and changes the basis.
The resulting vector has length s and represents the face in terms of eigenfaces.

To represent any face vector in terms of the first s eigenfaces, multiply by UT

s

.
To change back to a full length-mn projection, multiply again by U

s

.

140 Lab 11. Facial Recognition Using Eigenfaces

Problem 5.

1. Implement the method FacialRec.project() in your class definition. This
should accept a flattened image or an array with flattened images as
its columns. It should also accept a value for s. The function should
project the image or images into the appropriate s-dimensional sub-
space and change basis, then return the result.

2. Let face be the first mean-shifted face (the first column of facialRec.

Fbar). Do the following:

(a) Project face so that it is represented in terms of the first 19 eigen-
faces.

(b) Change basis again back to the standard basis on Rmn.

(c) Add back the mean face facialRec.mu.

(d) Plot the resulting image.

Your image should match Figure 11.4e.

Match Faces

Finally, we are ready to identify which mean-shifted image f̄
i

is closest to an input
image, ḡ. We begin by projecting all vectors to some s-dimensional subspace and
writing them in terms of the basis vectors, which are the eigenfaces. This is done
by multiplying by the change-of-basis matrix:

bf
i

= UT

s

(f
i

� µ) bg = UT

s

(g � µ).

Next, we compute which bf
i

is closest to bg. Since the columns of U
s

are an
orthonormal basis, we get the same result doing the computation in this basis as
we would in the standard Euclidean basis. Define

i⇤ = argmin
i

kbf
i

� bgk2.

Then the i⇤-th face image is the best match for g.

Problem 6.

1. Implement the method FacialRec.findNearest() as follows.

def findNearest(self, image, s=38):

Fhat = # Project Fbar, producing a matrix whose columns are the -
f-hat defined above

ghat = # Shift 'image' by the mean and project, producing g-hat -
as defined above

for both Fhat and ghat, use your project function from the -
previous problem

141

(a) 5 eigenfaces, about

1/32 of the total.

(b) 9 eigenfaces, or 1/16 of

the total.

(c) 19 eigenfaces, about

1/8 of the total.

(d) 38 eigenfaces, about

1/4 of the total.

(e) 75 eigenfaces, about

1/2 of the total.

(f) All 153 of the eigen-

faces.

Figure 11.4: Image rebuilt with various numbers of eigenfaces. The image is some-
what recognizable when it is reconstructed with only 1/8 of the eigenfaces.

Return the index that minimizes ||fhat_i - ghat||_2.

The functions np.linalg.norm() and np.argmin() will be useful for the last
line. When using np.linalg.norm, make sure you indicate the correct
axis.

2. Test your facial recognition system on faces selected randomly from
the faces94 dataset. The function sampleFaces(n_tests, path) at the end
of this lab will build an array of n_tests random faces from the faces94

dataset.

Plot the random face beside the face returned by your facial recognition
code to see if your system is accurately recognizing faces.

By this point, you have created a basic facial recognition system. We can extend
the system to detect when a face doesn’t match anything currently in the dataset,
and then add this new face. We can also make the system more robust by including
multiple pictures of the same face with di↵erent expressions and lighting conditions.

142 Lab 11. Facial Recognition Using Eigenfaces

Although there are other approaches to facial recognition that utilize more com-
plex techniques, the method of eigenfaces remains a wonderfully simple and e↵ective
solution, illustrating another application of the singular value decomposition.

Appendix: Helper Code

This section contains some functions to help you implement the facial recognition
class outlined in the problems of this lab.

import numpy as np

from scipy import linalg as la

from os import walk

from scipy.ndimage import imread

from matplotlib import pyplot as plt

from random import sample

def getFaces(path="./faces94"):

"""Traverse the directory specified by 'path' and return an array containing

one column vector per subdirectory.

For the faces94 dataset, this gives an array with just one column for each

face in the dataset. Each column corresponds to a flattened grayscale image.

"""

Traverse the directory and get one image per subdirectory.

faces = []

for (dirpath, dirnames, filenames) in walk(path):

for f in filenames:

if f[-3:]=="jpg": # only get jpg images

load image, convert to grayscale, flatten into vector

face = imread(dirpath+"/"+f).mean(axis=2).ravel()

faces.append(face)

break

put all the face vectors column-wise into a matrix.

F = np.array(faces).T

return F

def sampleFaces(n_tests,path = "./faces94")

"""Return an array containing a sample of n_tests images contained

in the path as flattened images in the columns of the output.

"""

files = []

for (dirpath, dirnames, filenames) in walk(path):

for f in filenames:

if f[-3:]=="jpg": # only get jpg images

files.append(dirpath+"/"+f)

#Get a sample of the images

test_files = sample(files, n_tests)

#Flatten and average the pixel values

images = np.array([imread(f).mean(axis=2).ravel() for f in test_files]).T

return images

The following is the outline of the Facial Recognition class.

143

class FacialRec:

##########Members##########

F, mu, Fbar, and U

###########################

def __init__(self,path):

self.initFaces(path)

self.initMeanImage()

self.initDifferences()

self.initEigenfaces()

def initFaces(self, path):

self.F = getFaces(path)

def initMeanImage(self):

pass

def initDifferences(self):

pass

def initEigenfaces(self):

pass

def project(self, A, s=38):

pass

def findNearest(self, image, s=38):

pass

