
Lab 12

Data Visualization

Lab Objective: Correctly presenting and interpreting data with visualizations is
both a science and an art. In this lab we discuss and demonstrate the principles of
good data visualization, including the key characteristics of good graphs, common
mistakes, and how to avoid unethical visualizations.

We strongly recommend completing this lab as a Jupyter Notebook.

The Importance of Visualizations

Visualizations of data often reveal insights that may not immediately obvious from
simple statistics. The following data set, known as Anscombe’s quartet, is a famous
example of the importance of graphing data.

I II III IV

x y x y x y x y

10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58

8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76

13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71

9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84

11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47

14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04

6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25

4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50

12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56

7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91

5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89

Each section of Anscombe’s quartet shares the following statistical properties:

• The means are 9 for x and 7.5 for y.

• The sample variances are 11 for x and 3.75 for y.

• The correlation between x and y is .816.

• The linear least squares regression line is y = 1
2x+ 3.

145

146 Lab 12. Data Visualization

Despite these similarities, each section is quite di↵erent from the others.

Problem 1. The file anscombe.npy contains Anscombe’s quartet in the
same format as displayed above. Plot each section of the quartet separately
as a scatter plot. Also plot the regression line y = 1

2x + 3 on the domain
x 2 [0, 20] over each scatter plot.

Write a few sentences describing what makes each section unique.

Principles of Good Data Visualization

Understanding a data set through visualizations is an iterative process. Examine
the data, start with an initial visualization, then adjust the original visualization
or create new ones. Ask the following questions while searching for insights:

1. Does the visualization represent the data accurately?

2. Would a di↵erent visualization communicate more information?

3. Would visualizing a subset of the data provide more information?

4. Would transforming the data reveal a hidden pattern?

E↵ectively visualizing data involves technical expertise combined with design
knowledge. No visualization is perfect, but every good visualization must contain
the following essential elements.

• Clarity. Good visualizations are as self-explanatory as possible. Always use
specific titles and axis labels, and include units of measure. Use a legend or
other annotations where appropriate.

• Simplicity. A good visualization communicates everything that it needs to,
but nothing more. Anything in a plot that fails to communicate information
or that misrepresents the data is called chartjunk, a term coined by Edward
Tufte. Make visualizations as simple, clean, and readable as possible.

• Integrity. Tell the truth, the whole truth, and nothing but the truth. It is
usually alarmingly easy to manipulate a visualization so that it supports a spe-
cific agenda. Resist the temptation to morph a visualization into something
that misrepresents the true nature of the data, even though that misrepresen-
tation might support your hypotheses about the data.

Every visualization should be presented together with information on who
created it, where the data was obtained, how it was collected, whether it was
cleaned or transformed, and whether there are conflicts of interest or possible
biases present. Cite your sources.

This list could be expanded, but virtually every good data visualization principle
fits into these three categories in one way or another.

147

Improving Specific Types of Visualizations

Data can be visualized in many forms and styles. However, Most data sets are more
naturally described with one type of visualization than another. In the following
sections, we explore how the plots we commonly use can be improved and refined.

Line Plots

A line plot connects ordered (x, y) points with straight lines, and is therefore best
for visualizing one or two ordered arrays, such as functional outputs over an ordered
domain or a sequence of values over time.

When creating a line plot, consider the following details.

• What do the axes represent? How should they be labeled?

• Would a linear scale or a logarithmic scale most clearly reveal patterns?

• What should the window limits be?

• Is the line an appropriate thickness and color?

• Should each point be distinctly marked, or is a smooth line preferable?

• Should multiple lines be in the same plot, or in separate subplots?

The Chebyshev polynomials are a family of orthogonal polynomials that are
recursively defined as follows.

T0(x) = 1 T1(x) = x T
n+1 = 2xT

n

(x)� T
n�1(x)

NumPy’s polynomial module has a convenient tool for constructing these and other
important polynomials.1 However, plotting several the polynomials on top of each
other, especially with a legend, results in a very cluttered visual.

>>> import numpy as np

>>> from matplotlib import pyplot as plt

>>> % matplotlib inline # Display notebook plots inline.

Plot the first 9 Chebyshev polynomials in the same plot.

>>> T = np.polynomial.Chebyshev.basis

>>> x = np.linspace(-1, 1, 200)

>>> for n in range(9):

... plt.plot(x, T(n)(x), label="n = "+str(n))

...

>>> plt.axis([-1.1, 1.1, -1.1, 1.1]) # Set the window limits.

>>> plt.legend()

1numpy.polynomial also has tools for computing other important polynomial families, including
the Legendre, Hermite, and Laguerre polynomials.

148 Lab 12. Data Visualization

This line plot can be improved in several easy ways.

1. Use subplots to split the visualization into smaller, comparable pieces. In-
stead of using a legend, give each subplot a title. This method, called small
multiples, was made famous by Edward Tufte.

2. Increase the line thicknesses to 2 or 3 (the default is 1).

3. Remove extra tick marks and axis labels.

Matplotlib’s plt.tick_params(), summarized below, controls which tick marks and
labels are displayed.

Argument Options Description
axis 'x', 'y', "both" Axis on which to operate.

which "major", "minor", "both" Operate on major or minor ticks.
color Any Matplotlib color Tick color.

labelcolor Any Matplotlib color Tick label color.
bottom, top, left, right "on", "off" Turn ticks on or o↵.
labelbottom, labeltop, "on", "off" Turn tick labels on or o↵.
labelleft, labelright

>>> for n in range(9):

... plt.subplot(3, 3, n+1)

... plt.plot(x, T(n)(x), lw=2)

... plt.axis([-1.1, 1.1, -1.1, 1.1])

...

... # Turn off extra tick marks and axis labels.

... plt.tick_params(which="both", top="off", right="off")

... if n < 6: # Remove x-axis label on upper plots.

... plt.tick_params(labelbottom="off")

... if n % 3: # Remove y-axis label on right plots.

... plt.tick_params(labelleft="off")

... plt.title("n = "+str(n))

149

Note

Matplotlib titles and annotations can be formatted with LATEX, a system for
creating technical documents.a To do so, use an ‘r’ before the string quotation
mark and surround the text with dollar signs. For example, try replacing the
final line of code in the previous example with the following line.

... plt.title(r"$T_{}(x)$".format(n))

The string’s format() method inserts the input n at the curly braces. The
title of the sixth subplot, instead of being “n = 5,” will then be “T5(x).”

aSee http://www.latex-project.org/ for more information.

Problem 2. The n+ 1 Bernstein basis polynomials of degree n are defined
as follows.

b
v,n

=

✓
n

v

◆
xv(1� x)n�v, v = 0, 1, . . . , n

Plot at least the first 10 Bernstein basis polynomials (n = 0, 1, 2, 3) as
small multiples on the domain [0, 1] ⇥ [0, 1]. Label the subplots for clarity,
adjust tick marks and labels for simplicity, and set the window limits of
each plot to be the same. Consider arranging the subplots so that the rows
correspond with n and the columns with v.
(Hint: The constant

�
n

v

�
= n!

v!(n�v)! is called the binomial coe�cient and can

be e�ciently computed with scipy.special.binom() or scipy.misc.comb().)

http://www.latex-project.org/

150 Lab 12. Data Visualization

Scatter Plots

A scatter plot draws (x, y) points without connecting them. Connecting the points
would imply an order or relation between the points, so scatter plots are best for
displaying data sets without a natural order, or where each point is a distinct,
individual instance.

Consider the following questions when making a scatter plot. Note that some
of them are the same questions that should be asked when creating a line plot.

• What do the axes represent? How should they be labeled?

• Would a linear scale or a logarithmic scale most clearly reveal patterns?

• What should the window limits be?

• Which marker is best? Are the markers an appropriate size and color?

A scatter plot can be drawn with either plt.plot() (specify a point marker such as
'.', ',', 'o', or '+') or plt.scatter(). While plt.plot() is the more flexible function in
general, plt.scatter() provides a few extra tools. Most useful are the keywords s and
c, which correspond to marker size and marker color, respectively. Each keyword
can either be a single entry or an array. Using an array specifies the sizes or colors
of each individual marker, allowing a scatter plot to have up to four dimensions of
information.

Consider a collection of rectangular boxes where the lengths, widths, and heights
are given. A scatter plot of length against width mostly describes the sizes of the
boxes; tying the third dimension (height) to the color of the points can provide the
additional information. Setting the marker size as the volume of the boxes also
adds some depth to the visualization, though modifying both the color and the size
might be considered overkill.

Since adjusting the marker size may lead to overlapping points, we specify the
alpha value of the color to make the markers slightly transparent. The keyword alpha

accepts a value in the interval [0, 1]; 0 makes the markers completely transparent,
while a 1 makes the markers completely opaque.

Finally, as with heat maps and contour plots, a color bar can be added with
plt.colorbar() to indicate the values that the colors represent. This color bar can
be given a label as well.

>>> length, width, height = np.random.randint(1, 20, (3,50))

>>> plt.subplot(221) # Plot length against width.

>>> plt.scatter(length, width, s=100)

>>> plt.grid()

>>> plt.ylabel("Width (inches)")

>>> plt.tick_params(labelbottom="off")

>>> plt.axis([0, 20, 0, 20])

Continued on the next page.

151

>>> plt.subplot(222) # Set the marker color to the height.

>>> plt.scatter(length, width, c=height, s=100)

>>> cbar = plt.colorbar()

>>> cbar.set_label("Height (inches)")

>>> plt.grid()

>>> plt.tick_params(labelbottom="off", labelleft="off")

>>> plt.axis([0, 20, 0, 20])

>>> plt.subplot(223) # Set the marker size to half the volume.

>>> plt.scatter(length, width, s=length*width*height/2., alpha=.7)

>>> plt.grid()

>>> plt.xlabel("Length (inches)")

>>> plt.ylabel("Width (inches)")

>>> plt.axis([0, 20, 0, 20])

>>> plt.subplot(224) # Use color and marker size together.

>>> plt.scatter(length, width, c=height, s=length*width*height/2., alpha=.7)

>>> cbar = plt.colorbar()

>>> cbar.set_label("Height (inches)")

>>> plt.grid()

>>> plt.tick_params(labelleft="off")

>>> plt.xlabel("Length (inches)")

>>> plt.axis([0, 20, 0, 20])

In scatter plots, connecting the points into a line plot usual results in extreme
clutter. A regression line, however, highlights a pattern in the data without over-
shadowing the actual data points.2

2See the Least Squares lab (QR 2), especially Problems 2–4, for a refresher on regression lines.

152 Lab 12. Data Visualization

Problem 3. The file MLB.npy contains measurements from over 1,000 recent
Major League Baseball players, compiled by UCLA.a Each row in the array
represents a di↵erent player; the columns are the player’s height (in inches),
weight (in pounds), and age (in years), in that order.

Describe the data with at least one scatter plot. Your graph(s) should
demonstrate whether height, weight, or age correlated with each other in the
MLB. Consider plotting linear regression lines to indicate trends.

aSee http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_MLB_HeightsWeights.

Histograms

A histogram partitions an interval into a number of bins and counts the number of
values that fall into each bin. Histograms are ideal for visualizing how unordered
data in a single array is distributed over an interval. If the data are draws from
a probability distribution, a histogram approximates the distribution’s probability
density function (PDF).

The following are important factors to consider when constructing a histogram.

• What does the x-axis represent? How should it be labeled?

• Is a linear or a logarithmic scale more appropriate for the frequency axis?

• How many bins should be used? Over what range should the bins be? This
is perhaps the most important question, as a histogram with too few or too
many bins usually fails to give a clear view of the distribution.

For most histograms, the most desirable insight is the general shape of the
distribution. The lines separating the bins, axis tick marks, and even the labels on
the y axis are all unnecessary (and potentially distracting) details. Removing the
lines between bins is easy: set the line width to 0. To ensure the gaps where the
lines used to be are filled, specify the histtype as "stepfilled" (using histtype="step"

will draw the outline without filling it in). Finally, to get rid of extra markings on
the axes, use plt.tick_params().

A histogram can be converted into a line plot by using np.histogram(). This
function returns the number of values in each bin and the locations of the edges of
the bins (in fact, plt.hist() employs this function). Use the edges of the bins to
calculate the center of the bins, then plot the bin centers against the frequency.

Get 10,000 random samples from a Beta distribution.

>>> data = np.random.beta(a=5, b=2, size=N)

>>> plt.subplot(131) # Draw a regular histogram.

>>> plt.hist(data, bins=30)

>>> plt.subplot(132) # Draw a clean histogram.

>>> plt.hist(data, bins=30, lw=0, histtype="stepfilled")

>>> plt.tick_params(left="off", top="off", right="off", labelleft="off")

Continued on the next page.

http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_MLB_HeightsWeights

153

>>> plt.subplot(133) # Convert the histogram to a line plot.

>>> freq, bin_edges = np.histogram(data, bins=30)

>>> bin_centers = (bin_edges[:-1] + bin_edges[1:])/2.

>>> plt.plot(bin_centers, freq, 'k-', lw=4)

>>> plt.tick_params(left="off", top="off", right="off", labelleft="off")

Finally, if the frequency domain is better visualized on a logarithmic scale, use
log=True as an argument to plt.hist(). This is the histogram equivalent of using
plt.semilogy() for line or scatter plots.

Achtung!

Line plots should not be used for data that has no natural progression. For
example, consider a collection of random draws from a statistical distribution.
In this case, a plain line plot is completely useless, because consecutive random
draws are completely unrelated. A histogram, on the other hand, provides an
approximation of the distribution’s probability density function.

Get 1,000 random samples from the standard normal distribution.

>>> data = np.random.normal(size=1000)

>>> plt.subplot(121) # Regular line plot of the data.

>>> plt.plot(data)

>>> plt.subplot(122) # Histogram of the data.

>>> plt.hist(data, bins=30)

154 Lab 12. Data Visualization

Problem 4. The file earthquakes.npy contains data from over 17,000 earth-
quakes between 2000 and 2010 that were at least a 5 on the Richter scale.a

Each row in the array represents a di↵erent earthquake; the columns are
the earthquake’s date (as a fraction of the year), magnitude (on the Richter
scale), longitude, and latitude, in that order.

Because each earthquake is a distinct event, a good way to start visual-
izing this data might be a scatter plot of the years versus the magnitudes of
each earthquake.

>>> year, magnitude, longitude, latitude = np.load("earthquakes.npy").T

>>> plt.plot(year, magnitude, '.')
>>> plt.xlabel("Year")

>>> plt.ylabel("Magnitude")

Unfortunately, this plot communicates very little information because the
data is so cluttered. Describe the data with two or three better visualizations,
including line plots, scatter plots, and histograms as appropriate. Your plots
should clearly answer the following questions:

1. How many earthquakes happened every year?

2. How often do stronger earthquakes happen compared to weaker ones?

3. Where do earthquakes happen? Where do the strongest earthquakes
happen?
(Hint: Use plt.axis("equal") to fix the aspect ratio, which may improve
comparisons between longitude and latitude.)

aSee http://earthquake.usgs.gov/earthquakes/search/.

http://earthquake.usgs.gov/earthquakes/search/

155

Heat Maps and Contour Plots

Let f : R2 ! R be a scalar-valued function on a 2-dimensional domain. A heat
map of f assigns a color to each (x, y) point in the domain based on the value of
f(x, y), while a contour plot is a drawing of the level curves of f . The level curve
corresponding to the constant c is the set {(x, y) | c = f(x, y)}. A filled contour
plot, which colors in the sections between the level curves, is a discretized version
of a heat map.

Consider the following questions when plotting a heat map or contour plot:

• Is the domain su�ciently refined?

• Which color scheme is most clear and e↵ective?

• How many / which contour lines should be drawn, if any?

• Is a linear or a logarithmic scale more appropriate for the color?

It is often su�cient to choose a fixed number of level curves. In this case, the
values of c corresponding to the level curves are automatically chosen to be evenly
spaced over the range of values of f on the domain. However, it is sometimes better
to strategically specify the curves by providing a list of c constants.

Consider the function f(x, y) = y2 � x3 + x2 on the domain [� 3
2 ,

3
2] ⇥ [� 3

2 ,
3
2].

A heat map of f reveals that it has a large basin around the origin. Then since
f(0, 0) = 0, choosing several level curves close to 0 more closely describes the
topography of the basin. The fourth subplot in the following example uses the
curves with c = �1, � 1

4 , 0, 1
4 , 1, and 4.

Construct a 2-D domain with np.meshgrid() and calculate f on the domain.

>>> x = np.linspace(-1.5, 1.5, 200)

>>> X, Y = np.meshgrid(x, x.copy())

>>> Z = Y**2 - X**3 + X**2

>>> plt.subplot(221) # Plot a heat map of f.

>>> plt.pcolormesh(X, Y, Z, cmap="viridis")

>>> plt.colorbar()

>>> plt.subplot(222) # Plot a contour map with 6 level curves.

>>> plt.contour(X, Y, Z, 6, cmap="viridis")

>>> plt.colorbar()

>>> plt.subplot(223) # Plot a filled contour map with 12 levels.

>>> plt.contourf(X, Y, Z, 12, cmap="viridis")

>>> plt.colorbar()

>>> plt.subplot(224) # Plot specific level curves and a heat map.

>>> plt.contour(X, Y, Z, [-1, -.25, 0, .25, 1, 4], colors="white")

>>> plt.pcolormesh(X, Y, Z, cmap="viridis")

>>> plt.colorbar()

156 Lab 12. Data Visualization

There are two main kinds of color maps: sequential and diverging. Sequential
color maps, like "hot" and "cool", transition very gradually between two colors;
diverging color maps, like "seismic" and "coolwarm", transition very rapidly from one
color to another at the mean value. When in doubt, use "viridis" or "plasma", two
specialized sequential color schemes. For the complete list of Matplotlib color maps,
see http://matplotlib.org/examples/color/colormaps_reference.html.

The color map can be changed to a logarithmic scale by using the keyword
argument norm=matplotlib.colors.LogNorm() (this works for plt.scatter() as well). As
an example, consider the same f defined above on the larger domain [�6, 6]⇥[�6, 6].
Log scaling can only be done on arrays of all positive values, so we visualize |f |.

>>> from matplotlib.colors import LogNorm

>>> x = np.linspace(-6, 6, 200)

>>> X, Y = np.meshgrid(x, x.copy())

>>> Z = np.abs(Y**2 - X**3 + X**2)

>>> plt.subplot(121) # Plot a regular heat map of |f|.

>>> plt.pcolormesh(X, Y, Z, cmap="plasma")

>>> plt.colorbar()

>>> plt.subplot(122) # Plot a filled contour plot with log scaling.

>>> plt.contourf(X, Y, Z, 6, cmap="plasma", norm=LogNorm())

>>> plt.colorbar()

http://matplotlib.org/examples/color/colormaps_reference.html

157

Problem 5. The Rosenbrock function is defined as follows.

f(x, y) = (1� x)2 + 100(y � x2)2

The minimum value of f is 0, which occurs at the point (1, 1) at the bottom
of a steep, banana-shaped valley of the function.

Use heat maps and contour plots to visualize the Rosenbrock function in
such a way that the minimum value, and the valley that it lies in, is apparent.
Consider plotting the minimizer (1, 1) on top of the plot as well.

Bar Charts

A bar chart plots categorical data in a sequence of bars. They are best for small,
discrete, one-dimensional data sets. Use plt.bar() (vertical) or plt.barh() (horizon-
tal) to create a bar chart in Matplotlib. These functions receive the locations of
each bar, then the height of each bar (as lists or arrays).

Consider the following questions when constructing a bar chart.

• What are the di↵erent categories in the data?

• How should the data be sorted?

• Should the value axis have a linear or a logarithmic scale?

Horizontal bar charts are usually preferable to vertical bar charts because hor-
izontal labels are easier to read than vertical labels. Labels can be rotated, but it
is better when the reader doesn’t have to turn his or her head.

Data in a bar chart should also be sorted in a logical way. Sort the categories
by bar size, alphabetize the labels, or use some other intuitive ordering.

158 Lab 12. Data Visualization

>>> labels = ["Lobster Thermador", "Baked Beans", "Crispy Bacon",

... "Smoked Sausage", "Hannibal Ham", "Eggs", "Spam"]

>>> values = [10, 11, 18, 19, 20, 21, 22]

>>> positions = np.arange(len(labels))

>>> plt.subplot(121)

>>> plt.bar(positions, values, align="center")

>>> plt.xticks(positions, labels)

>>> plt.subplot(122)

>>> plt.barh(positions, values, align="center")

>>> plt.yticks(positions, labels)

Practices to Avoid

Bad Types of Visualization

Some kinds of visualizations, especially for categorical data, are popular even though
they interfere with the reader’s ability to interpret the displayed information. For
example, it is more di�cult to see the di↵erences in a pie chart than on a bar chart
since di↵erences in area are more di�cult to detect than di↵erences in length. By
the same logic, bar chart with several bars per category are almost always better
with the bars side by side rather than stacked.

Figure 12.7: Transforming the horrendous 3-D pie chart on the left into the hori-
zontal bar chart on the right both simplifies and clarifies the information.

159

Misrepresenting Data

To conclude, we return to the issue of integrity. It is very easy to misrepresent the
true nature of a set of data with a visualization. Perhaps the easiest way to do so
is with poorly chosen window limits or axis scales. Consider the following example
of a scatter plot, presented four di↵erent ways. The fourth subplot is the only one
that correctly shows the position of the points in relation to the origin and that has
a reasonable scales on both axes.

>>> x = np.linspace(5, 10, N) + np.random.normal(size=N)/3.

>>> y = .5*x + 4 + np.random.normal(size=N)/2.

>>> plt.subplot(221) # Plot a default scatter plot of the data.

>>> plt.plot(x, y, 'o', ms=10)

>>> plt.subplot(222) # Change the window limits so that the

>>> plt.plot(x, y, 'o', ms=10) # data appears steep in the y direction.

>>> plt.xlim(-5,20)

>>> plt.subplot(223) # Change the y-axis scale so that the data

>>> plt.semilogy(x, y, 'o', ms=10) # appears flat in the y direction.

>>> plt.subplot(224) # Plot the data with equal axis scales and

>>> plt.plot(x, y, 'o', ms=10) # presenting the relation to the origin.

>>> plt.xlim(xmin=0)

>>> plt.ylim(ymin=0)

Do everything in your power to avoid visualizing data unethically.

160 Lab 12. Data Visualization

Problem 6. The file countries.npy contains information from 20 di↵erent
countries. Each row in the array represents a di↵erent country; the columns
are the 2015 population (in millions of people), the 2015 GDP (in billions of
US dollars), the average male height (in centimeters), and the average female
height (in centimeters), in that order.a

The countries corresponding are listed below in order.

countries = ["Austria", "Bolivia", "Brazil", "China",

"Finland", "Germany", "Hungary", "India",

"Japan", "North Korea", "Montenegro", "Norway",

"Peru", "South Korea", "Sri Lanka", "Switzerland",

"Turkey", "United Kingdom", "United States", "Vietnam"]

Visualize this data set with at least four plots, using at least one scatter
plot, one histogram, and one bar chart. Write a few sentences summarizing
the major insights that your visualizations reveal.
(Hint: consider using np.argsort() and fancy indexing to sort the data for the
bar chart.)

a See https://en.wikipedia.org/wiki/List_of_countries_by_GDP_(nominal), http:
//www.averageheight.co/, and https://en.wikipedia.org/wiki/List_of_countries_

and_dependencies_by_population.

https://en.wikipedia.org/wiki/List_of_countries_by_GDP_(nominal)
http://www.averageheight.co/
http://www.averageheight.co/
https://en.wikipedia.org/wiki/List_of_countries_and_dependencies_by_population
https://en.wikipedia.org/wiki/List_of_countries_and_dependencies_by_population

