SymPy

Lab 15

Symbolic and Automatic
Differentiation in Python

Lab Objective:  Python is good for more than just analysis of numerical data.
There are several packages available which allow symbolic and automatic computa-
tion in Python, two of which are SympPy and autograd. This lab should teach you to
do some basic manipulations in SymPy and autograd as well as their applications in
differentiation. Keep in mind, however, that this introduction is not comprehensive.

SymPy is designed to be a fully featured computer algebra system in Python. It is
actually used for much of the symbolic computation in Sage. An example of what
we mean by symbolic computation is the following:

>>> import sympy as sy

>>> x = sy.symbols('x') # Define a symbolic variable.

>>> sy.expand((x+1)*x10) # Expand an expression with that variable.

x*¥*%10 + 10%x**9 + 45*%x*x*8 + 120*x**7 + 210*x**6 + 252xx**5 + 210*x**4 + 120*x**3 <
+ 45xx**2 + 10*x + 1

When used properly, this package can simplify large amounts of algebra for
you. This can be incredibly useful in a wide variety of situations. As you may
have guessed, such packages generally have a wide variety of features. The official
documentation for SymPy is found at http://sympy.org/en/index.htmll

Some Convenient Tools

SymPy includes a simplified plotting wrapper around Matplotlib.

>>> x = sy.symbols('x')
>>> expr = sy.sin(x) * sy.exp(x)
>>> sy.plot(expr, (x, -3, 3))

which plots sin(z)e® for values of  from -3 to 3.
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SymPy also has several nice options for printing equations. If you want to get a
rough idea of what the equation looks like, you can use sy.pprint(). It can interface
with the IPython Notebook to display the formula more clearly as well. If you
are using the IPython Notebook, you can enable pretty printing by loading the
extension that comes with SymPy. In SymPy 7.2 this is done as follows:

%load_ext sympy.interactive.ipythonprinting

In SymPy 7.3 it is:

import sympy as sy
sy.init_printing()

SymPy has many more useful features. Figure shows a screenshot of
SymPy’s special printing in the IPython notebook. If at some point you need
to write a formula in TEX, the function sy.1atex() can convert a SymPy symbolic
expression to IHTEX for you.

In [1]: import sympy as sy
zy.init printing()
X, ¥, 2z, theta = sy.symbols{"x,v,z,%\\theta")

sy.sin({theta) *sy.exply) *sy.log(z) * (x+y*theta) **4
sy.Integral (expr, (x,0,2))
sy.Integral {expz, (y,-1,1))
sy.Integral (expr, (z,-2,0))
sy.Derivative {expr, theta)

In [2): | expr
eXpr
expr
expr
expr
expr

d (0 o2
¥T / / / (By +z) e log (2) sin (8) dz dy d=
—-2J-14J0

Figure 15.1: A screenshot showing how SymPy can interface with the IPython
Notebook to display equations nicely.

Basic Number Types

SymPy has some good built in datatypes which can be used to represent rational
numbers and arbitrary precision floating point numbers. Arbitrary precision floating
point operations are supported through the package mpmath. These can be useful if
you need to do computation to a very high precision, or to avoid possible overflow

error in computation. They are, however, much more costly to compute.
You can declare a rational number § using sy.Rational(a, b). A real number r
of precision n can be declared using sy.Float(r,n).

A nice example of the use of these datatypes is the following function which
computes m to the nth digit.

def mypi(n):
#calculates pi to n decimal points.
tot = sy.Rational(0, 1)
term = 1
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bound = sy.Rational(l, 10)#**(n+1)
i=0
while bound <= term:
term = 6 * sy.Rational(sy.factorial(2+#i), 4x*ix(sy.factorial(i))**2x*(2xi<—>
+1) *2%x (2%i+1))
tot += term
i+=1
return sy.Float(tot, n)

This function works by evaluating the Taylor Series for 6 arcsin (%) We used a

rather crude error estimate to ensure that we were close enough to break the loop.

Problem 1. Write a function myexp that takes an integer n as a parameter
and evaluates e to the nth digit, using an approach similar to the code given
above. Use the series
= 1
e=>
n=0

Use the same condition as above to determine when to break your while loop.

Symbolic Manipulation

In SymPy, you need to declare symbolic objects before you use them. To define
a symbol z, we write x = sy.symbols('x'). This can also be used to define multiple
variables at once, as in x, y, z = sy.symbols('x,y,z'). The string form of each vari-
able on the right is used for showing expressions that involve the variable. You will
need to be careful about capitalization and that last ‘s’ in the name of the function.
Calling sy.symbol() will allow you to create a single symbolic variable, but sy.symbol
is a submodule and cannot be called at all.

SymPy can be used to solve difficult expressions for given variables. Not every-
thing can be solved, but SymPy’s algorithms are pretty good and can often save a
great deal of time. We consider the following equation:

w x Y z

+ + + =0
w—r T—Y Y—z zZ—W

Say we need an explicit solution for a given variable. Since the expression is sym-
metrical, it doesn’t really matter which one, but we can solve this in the following
way:

import sympy as sy

W, X, ¥, z = sy.symbols('w, x, y, z')

expr = w/(w-x) + x/(x-y) + y/(y-z) + z/(z-w)
sy.solve(expr, w)

In any variable, this expression is quadratic, but each coefficient will depend on the
other 3 variables. This would be a terrible pain to do by hand, but SymPy can take
care of that for us. It is worth noting that SymPy cannot do everything, but if we
keep in mind what we are doing and are familiar with the tools it has, it can make
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complex algebraic operations a great deal faster. We should also note that solve()
returns a list of expressions. If we want an expression to work with, we must take
an item from the list.

In this particular example, you will notice that we only used a symbolic expres-
sion and not a full equation. What SymPy did was set the expression equal to
zero, solve for the variable we wanted, then return the result. SymPy also supports
equation objects (and inequalities), but this approach is often easier. If you need to
declare equations, they can be declared using something like equation = sy.Eq(x, y)
which represents the equation © =y

Problem 2. Use SymPy to solve the equation y = e” +x for . The SymPy
syntax for e” is simpy sy.exp(x), provided that z has been initialized as a
symbol. The answer will be in terms of the Lambert W function, which
is a special function available in most major symbolic math libraries. It is
included in both SciPy and SymPy and is defined as the inverse of y = ze”.

SymPy can also be used to expand and simplify different symbolic expressions.
As an example we will simplify the expression
wx2y2 —wx? — wa +w — :172y2z + 2x2y2 4+ 22z — 222 + yQZ — 2y2 —z+2
wry —wr —wy +w —axyz +2xy+rz—2rx+yzr —2y —z+2

>>> w, x, y, z=sy.symbols('w, x, y, z')

>>> expr = (WhX**k2ky*k*2 — WKXKk*k2 — WKyYK*k2 + W — XRK2KYARKDKZ + 2AXKK2KYHRKD + XkKDK
Z - 2%kx*%*2 + y**2*z - 2*y**2 -z + 2)/(w*x*y - WKX - WXy + W - Xky*xz + 2*x*y<—>
+ X*z — 2%x + yxz - 2%y - z + 2)

>>> expr.simplify()

xxy + x +y + 1

simplify() is the general simplification method for a SymPy expression. It can be
called as a function from the module, i.e. as sy.simplify() or it can be used as a
method for an object as in the example above. You can also tell SymPy to do more
specific types of simplification, for example if you want to factor an expression, you
can use factor(). If you want to tell it to expand an expression you can use expand().
To focus purely on simplifying the trigonometric aspects of the expression you can
use trigsimp(). If you want SymPy to cancel variable expressions in the numerator
and denominator of all rational sub-expressions, use cancel(). There are several
other kinds of algebraic manipulations you can do in SymPy, see the documentation
for a more comprehensive list. Many of these more important functions in SymPy
are also available as methods to expressions. This is the case with all of the above
examples.

Be sure to be careful when writing out symbolic expressions. Python floating
point numbers are still floating point numbers and Python integers are still integers.
A simple example is the expression (3/4)*sy.sin(x) which evaluates to 0, and should
probably have been written as 3+sy.sin(x)/4 Or sy.Rational(3,4)*sy.sin(x). Be careful
about using floating points as well. The expression (3./4.)*sy.sin(x) will evaluate
to .75*sy.sin(x), and the floating point calculations will carry through to the rest
of your symbolic work with that expression.
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Another useful feature is substitution. Substitution can be done using the subs ()
method of an expression. You can substitute numbers and variables in for variables
and even expressions. For example, if you want to see what an expression looks like
if x is set to zero, you can use:

>>> x, y = sy.symbols('x,y"')

>>> expr = sy.sin(x)*sy.cos(x)*sy.exp(y)* (xx*3+y)**x4
>>> expr.subs(x, 0)

0

where expr is the expression you have already defined. Note that none of these
operations modify the expression in place. They return a modified version of the
expression, but do not actually change the original.

Substitution also can be used (to some extent) to substitute one expression for
another. For example, if you want to apply the double angle identity to replace
products of sines and cosines, you could use the following:

>>> expr.subs(sy.sin(x) * sy.cos(x), sy.sin(2+*x)/2)
(x*x3 + y)**4xexp(y)*sin(2*x)/2

If you want to eliminate higher powers of a variable in an expression you can use
something like:

>>> expr.subs(x**3, 0)
y**x4xexp (y) *sin(x) *cos (x)

which will eliminate all terms of the expression involving 3. At present time this
will not eliminate terms involving z* or higher powers of = that are not divisible by
3.

If you want to substitute values in for multiple variables, you can either use a
dictionary or a list of tuples for each variable and value.

>>> expr.subs({x:1.,y:2.})
272.113412745844

>>> expr.subs([(x,1.),(y,2.)1)
272.113412745844

Calculus in SymPy

SymPy can also be used to take limits, integrals, and derivatives. Again, this can be
very helpful when doing things that would be difficult to do by hand. For example,
the following equation takes the 20th partial derivative with respect to = of

23

H (@ +1y)

i=1

X, ¥y, i = sy.symbols('x, y, i')

expr = sy.product((x+ixy), (i, 1, 23))
expr = expr.expand()

expr.diff(x, 20)
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We can also integrate difficult things, for example, if we want to integrate
e” sin(z) sinh(z), this can be done with one line in SymPy.

sy.Integral(sy.sin(x) * sy.exp(x) * sy.sinh(x), x).doit()

Notice the .doit() method. This tells SymPy to evaluate all derivatives, integrals,
limits, etc. inside the expression.

Derivatives can be taken using the sy.Derivative() function, or the .diff () method
of a SymPy expression. This can be done like this:

>>> x, y = sy.symbols('x,y"')

>>> expr = sy.sin(x)*sy.cos(x)*sy.exp(y)* (x**3+y)**4

>>> sy.Derivative(expr,x).doit ()

12*x** 2% (x*x*3 + y)**3*xexp(y)*sin(x)*cos(x) - (x**3 + y)**d*exp(y)*sin(x)**2 + (x>
**3 + y)**k4xexp (y)*cos (x)**2

or, equivalently, like this:

>>> expr.diff (x)
12xx**2% (x**3 + y)**3*exp(y)*sin(x)*cos(x) - (x**3 + y)**xdxexp(y)*sin(x)**2 + (x>
**3 + y)*xdxexp (y)*cos(x)**2

You can find the 3rd derivative by doing the following:

expr.diff(x, 3)

The second argument is the number of derivatives to take. If it is omitted, one

derivative will be taken. You can also pass additional variables as arguments, for

example, if we want to find % (d% sin (zy)), we can do it in this way:

expr = sy.sin(x*y)
expr.diff (x,y)

These tricks also work with integrals, with the exception of taking multiple integrals
in the same variable. You can integrate two different variables along two different
bounds, as in:

sy.integrate (y**2*x**2, (x, -1, 1), (y, -1, 1))

and you can integrate with respect to multiple variables, as in:

sy.integrate(y**2 * x**2, x, y)

Problem 3. Use SymPy to symbolically evaluate

/ sin (w2) dx
0

In SymPy, positive infinity is represented by the object sy.oo
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Problem 4. Use SymPy to calculate the derivate of e¥™(¢s(®) at z = 1.
Time how long it takes to compute this derivative using SymPy as well as
centered difference quotients and calculate the error for each approximation.

You can also use SymPy to solve some sorts of basic ordinary differential equa-
tions. This will solve the equation Y, — 2 * y, +y = sin (z)

x = sy.symbols('x"')

f = sy.Function('f"')

eq = sy.Eq(f(x).diff(x, 2) - 2*f(x).diff(x) + £(x), sy.sin(x))
sy.dsolve(eq)

or, equivalently,

x = sy.symbols('x')

f = sy.Function('f')

expr = f(x).diff(x, 2) - 2*f(x).diff(x) + f(x) - sy.sin(x)
sy.dsolve (expr)

Problem 5. Use SymPy to solve the following differential equation:

10

21%% 4 2 sin (x) + z12e% sin (x) — 212 cos (2x) + z*€® cos (3z)
You may recall from your last class on differential equations that this sort of
problem is solved by the method of undetermined coefficients. Imagine how
terrible this would be to do by hand!

SymPy can also be used to compute the Jacobian of a matrix using the .jacobian
O method, which takes in either a list or a matrix of the variables. The Jacobian
2

of f(z,y) = {

xﬁ_ y ] is found by doing the following:

X,y = sy.symbols('x,y')
F = sy.Matrix([x**2,x+y])
F.jacobian([x,y])

In addition, SymPy includes several integral transforms, such as the Laplace,
Fourier, Sine, and Cosine Transforms. SymPy also allows you to do simple separa-
tion of variables on PDEs, Taylor Series, Laurent Series, Fourier Series, and many,
many other things.

Autograd

Autograd is a package that allows you to automatically differentiate Python and
NumPy code. Unlike SymPy which has many diverse applications, autograd is used
solely in differentiation. Autograd is very useful in machine learning.
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Autograd is installed by running the following command in the terminal:

pip install autograd

The following code computes the derivative of e*(co3(#)) at 2 = 1 using autograd.

>>> from autograd import grad

>>> import autograd.numpy as np

>>> g = lambda x: np.exp(np.sin(np.cos(x)))
>>> grad_g = grad(g)

>>> grad_g(1.)

-1.20697770398

There are a couple of things to note from this example. autograd.numpy is a thinly-
wrapped NumPy. Also, grad() returns a function that computes the gradient of
your original function. This new function which returns the gradient accepts the
same parameters as the original function.

When there are multiple variables, the parameter argnum allows you to specify
with respect to which variable you are computing the gradient.

>>> f = lambda X,y: 3*x*y + 2%y - X

>>> grad_f = grad(f, argnum=0) #gradient with respect to the first variable
>>> grad_£(.25,.5)

0.5

>>> grad_f = grad(f, argnum=1) #gradient with respect to the second variable
>>> grad_fun(.25,.5)

2.75

Finding the gradient with respect to multiple variables can by done using multigrad()
by specifying which variables in the argnums parameter.

>>> grad_fun = autograd.multigrad(function, argnums=[0,1])
>>> grad_fun(.25,.5)
(0.5, 2.75)

Problem 6. Use autograd to compute the derivative of f(z) = In y/sin(y/z)
at x = 7. Time how long it takes to compute this derivative using autograd,
SymPy, and the centered difference quotient. Calculate the error for each
approximation.

Computing the Jacobian is also possible using autograd. The following shows

how to find the Jacobian of f(z,y) = { ] evaluated at (1,1):

T
Tty

from autograd import jacobian

f = lambda x: np.array([x[0]**2, x[0]+y[0]1])
jacobian_f = jacobian(f)

jacobian_f (np.array([1.,1.]1))

It is important to remember that if you use grad() the output must be a scalar,
whereas using jacobian() allows you to compute the gradient of a vector.
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To learn more about autograd visit https://github.com/HIPS/autograd.
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