
Lab 16

Newton’s Method and
Basins of Attraction

Lab Objective: Use Newton’s Method to find zeros of a function. Determine
where an initial point will converge to based on basins of attraction.

Newton’s method finds the roots of functions; that is, it finds x such that f (x) =
0. This method can be used in optimization to determine where the maxima and
minima occur. For example, it can be used to find the zeros of the first derivative.

Newton’s Method

Newton’s method begins with an initial guess x0. Successive approximations of the
root are found with the following recursive sequence:

x
n+1 = x

n

� f(x
n

)

f 0(x
n

)
.

In other words, Newton’s method approximates the root of a function by finding
the x-intercept of the tangent line at (x

n

, f(x
n

)) (see Figure ??).

The sequence {x
n

} will converge to the zero x of f if

1. f , f 0, and f 00 exist and are continuous,

2. f 0(x) 6= 0, and

3. x0 is “su�ciently close” to x.

In applications, the first two conditions usually hold. However, if x and x0 are
not “su�ciently close,” Newton’s method may converge very slowly, or it may not
converge at all.

Newton’s method is powerful because given the three conditions above, it con-
verges quickly. In these cases, the sequence {x

n

} converges to the actual root
quadratically, meaning that the maximum error is squared at every iteration.

Let us do an example with f(x) = x2 � 1. We define f(x) and f 0(x) in Python
as follows.

187

188 Lab 16. Newton’s Method

-2 -1 1 2

-2

2

4

6

8

10

x0

x1

x2

Figure 16.1: An illustration of how two iterations of Newton’s method work.

>>> import numpy as np

>>> from matplotlib import pyplot as plt

>>> f = lambda x : x**2 - 1

>>> Df = lambda x : 2*x

Now we set x0 = 1.5 and iterate.

>>> xold = 1.5

>>> xnew = xold - f(xold)/Df(xold)

>>> xnew

1.0833333333333333

We can repeat this as many times as we desire.

>>> xold = xnew

>>> xnew = xold - f(xold)/Df(xold)

>>> xnew

1.0032051282051282

We have already computed the root 1 to two digits of accuracy.

Problem 1. Implement Newton’s method with a function that accepts the
following parameters: a function f , an initial x-value, the derivative of the
function f , the number of iterations of Newton’s method to perform that de-

189

faults to 15, and a tolerance that defaults to 10�6. The function returns when
the di↵erence between successive approximations is less than the tolerance
or the max number of iterations has been reached.

Problem 2.

1. Newton’s method can be used to find zeros of functions that are hard to
solve for analytically. Plot f(x) = sin(x)

x

� x on [�4, 4]. Note that this
function can be made continuous on this domain by defining f(0) = 1.
Use your function Newtons_method() to compute the zero of this function
to seven digits of accuracy.

2. Run Newtons_method() on f(x) = x1/3 with x0 = .01. What happens and
why? Hint: The command x**(1/3) will not work when x is negative.
Here is one way to define the function f(x) = x1/3 in NumPy.

f = lambda x: np.sign(x)*np.power(np.abs(x), 1./3)

Problem 3. Suppose that an amount of P1 dollars is put into an account at
the beginning of years 1, 2, ..., N1 and that the account accumulates interest
at a fractional rate r. (For example, r = .05 corresponds to 5% interest.)
Suppose also that, at the beginning of years N1 + 1, N1 + 2, ..., N1 +N2, an
amount of P2 dollars is withdrawn from the account and that the account
balance is exactly zero after the withdrawal at year N1 + N2. Then the
variables satisfy the following equation:

P1[(1 + r)N1 � 1] = P2[1� (1 + r)�N2].

If N1 = 30, N2 = 20, P1 = 2000, and P2 = 8000, use Newton’s method to
determine r. (From Atkinson Page 118)

Backtracking

There are times when Newton’s method may not converge due to the fact that the
step from x

n

to x
n+1 was too large and the zero was stepped over completely. This

was seen in Problem 2 when using x0 = .01 to find the zero of f(x) = x1/3. In that
example, Newton’s method did not converge since it stepped over the zero of the
function, produced x1 = �.02 and each iteration got increasingly more negative. To
combat this problem of overstepping, backtracking is a useful tool. Backtracking is
simply taking a fraction of the full step from x

n

to x
n+1. Define Newton’s Method

190 Lab 16. Newton’s Method

with the recursive sequence:

x
n+1 = x

n

� ↵
f(x

n

)

f 0(x
n

)

and the vector version of Newton’s Method as:

x
n+1 = x

n

� ↵Df(x
n

)�1f(x
n

).

Previously, we have used ↵ = 1 in Newton’s method. Backtracking uses ↵ < 1 in
the above sequences and allows us to take a fraction of the step when the step size
is too big.

Problem 4. 1. Modify your Newtons_method() function so that it accepts
a parameter ↵ that defaults to 1 to allow backtracking.

2. Find an ↵ < 1 so that running Newtons_method() on f(x) = x1/3 with
x0 = .01 converges. (See Problem 2). Return the results of Newtons_method
().

Problem 5. 1. Create a Newtons_vector() function that performs New-
ton’s method on vectors.

2. Bioremediation involves the use of bacteria to consume toxic wastes.
At steady state, the bacterial density x and the nutrient concentration
y satisfy the system of nonlinear equations

�xy � x(1 + y) = 0,

�xy + (� � y)(1 + y) = 0,

where � and � are parameters that depend on various physical features
of the system. For this problem, assume the typical values � = 5 and
� = 1, for which the system has solutions at (x, y) = (0, 1), (0,�1),
and (3.75, .25). Solve the system using Newton’s method and New-
ton’s method with backtracking. (Find an initial point where using
↵ = 1 converges to either (0, 1) or (0,�1) and using ↵ < 1 converges
to (3.75, .25)). Use matplotlib to demonstrate the tracks used to find
the solution. (See Figure 16.2) Hint: use starting values within the
rectangle

(x, y) : �.25 6 x 6 .25,�.25 6 y 6 .25.

(Adapted from problem 5.19 of M. T. Heath, Scientific Computing, an
Introductory Survey, 2nd edition, McGraw?Hill, 2002 and the Notes of
Homer Walker)

191

Figure 16.2: Starting at the same initial value results in convergence to two di↵erent
solutions. The red line converges to (0,�1) with ↵ = 1 in 4 iterations of Newton’s
method while the blue line converges to (3.75, .25) with ↵ < 1 in 12 iterations .

Basins of Attraction: Newton Fractals

When f(x) has many roots, the root that Newton’s method converges to depends
on the initial guess x0. For example, the function f(x) = x2 � 1 has roots at �1
and 1. If x0 < 0, then Newton’s method converges to -1; if x0 > 0 then it converges
to 1 (see Figure 16.3). We call the regions (�1, 0) and (0,1) basins of attraction.

When f is a polynomial of degree greater than 2, the basins of attraction are
much more interesting. For example, if f(x) = x3 � x, the basins are depicted in
Figure 16.4.

We can extend these examples to the complex plane. Newton’s method works in
arbitrary Banach spaces with slightly stronger hypotheses (see Chapter 7 of Volume
1), and in particular it holds over C.

Let us plot the basins of attraction for f(x) = x3 � x on the domain {a + bi |
(a, b) 2 [�1.5, 1.5] ⇥ [�1.5, 1.5]} in the complex plane. We begin by creating a
700⇥ 700 grid of points in this domain. We create the real and imaginary parts of
the points separately, and then use np.meshgrid() to turn them into a single grid of
complex numbers.

>>> xreal = np.linspace(-1.5, 1.5, 700)

>>> ximag = np.linspace(-1.5, 1.5, 700)

>>> Xreal, Ximag = np.meshgrid(xreal, ximag)

>>> Xold = Xreal+1j*Ximag

192 Lab 16. Newton’s Method

Figure 16.3: The plot of f(x) = x2 � 1 along with some values for x0. When
Newton’s method is initialized with a blue value for x0 it converges to -1; when it
is initialized with a red value it converges to 1.

Figure 16.4: The plot of f(x) = x3 � x along with some values for x0. Blue values
converge to �1, red converge to 0, and green converge to 1.

Recall that 1j is the complex number i in NumPy. The array Xold contains 7002

complex points evenly spaced in the domain.

We may now perform Newton’s method on the points in Xold.

>>> f = lambda x : x**3-x

>>> Df = lambda x : 3*x**2 - 1

>>> Xnew = Xold - f(Xold)/Df(Xold)

After iterating the desired number of times, we have an array Xnew whose entries

193

Figure 16.5: Basins of attraction for x3 � x in the complex plane. The picture on
the right is a close-up of the figure on the left.

are various roots of x3 � x.

Finally, we plot the array Xnew. The result is similar to Figure 16.5.

>>> plt.pcolormesh(Xreal, Ximag, Xnew)

Notice that in Figure 16.5, whenever red and blue try to come together, a patch
of green appears in between. This behavior repeats on an infinitely small scale,
producing a fractal. Because it arises from Newton’s method, this fractal is called
a Newton fractal.

Newton fractals tell us that the long-term behavior of the Newton method is
extremely sensitive to the initial guess x0. Changing x0 by a small amount can
change the output of Newton’s method in a seemingly random way. This is an
example of chaos.

Problem 6. Complete the following function to plot the basins of attraction
of a function.

def plot_basins(f, Df, roots, xmin, xmax, ymin, ymax, numpoints=100, iters -
=15, colormap='brg'):
"""Plot the basins of attraction of f.

INPUTS:

f - A function handle. Should represent a function

from C to C.

Df - A function handle. Should be the derivative of f.

roots - An array of the zeros of f.

xmin, xmax, ymin, ymax - Scalars that define the domain

for the plot.

numpoints - A scalar that determines the resolution of

the plot. Defaults to 100.

iters - Number of times to iterate Newton's method.

Defaults to 15.

colormap - A colormap to use in the plot. Defaults to 'brg'.
"""

194 Lab 16. Newton’s Method

You can test your function on the example f(x) = x3 � x above.

When the function plt.pcolormesh() is called on a complex array, it eval-
uates only on the real part of the complex numbers. This means that if two
roots of f have the same real part, their basins will be the same color if you
plot directly using plt.pcolormesh().

One way to fix this problem is to compute Xnew as usual. Then iterate
through the entries of Xnew and identify which root each entry is closest to
using the input roots. Finally, create a new array whose entries are integers
corresponding to the indices of these roots. Plot the array of integers to view
the basins of attraction.
(Hint: The roots of f(x) = x3 � x are 0, 1, and �1.)

Problem 7. Run plot_basins() on the function f(x) = x3�1 on the domain
{a+ bi | (a, b) 2 [�1.5, 1.5]⇥ [�1.5, 1.5]}. The resulting plot should look like
Figure 16.6.
(Hint: the roots of f(x) = x3 � 1 are the third roots of unity: 1, � 1

2 +
p
3
2 i,

and � 1
2 �

p
3
2 i.)

Figure 16.6: Basins of attraction for x3 � 1.

