
Lab 17

Conditioning and Stability

Lab Objective: Explore the condition of problems and the stability of algorithms.

The condition number of a function measures how sensitive that function is to
changes in the input. On the other hand, the stability of an algorithm measures
how well that algorithm computes the value of a function from exact input.

Condition Number of a Function

The (absolute) condition number of a function f : Rm ! Rn is

J(x) = lim
�!0

sup
k�xk�

k�fk
k�xk (17.1)

where �f = f(x + �x) � f(x). In other words, the condition number of f is (the
limit of) the change in output over the change of input.

Similarly, the relative condition number of f is the limit of the relative change
in output over the relative change in input, i.e.,

(x) = lim
�!0

sup
k�xk�

✓
k�fk
kf(x)k

�
k�xk
kxk

◆
. (17.2)

In fact,

(x) =
kxk

kf(x)kJ(x)

A function is ill-conditioned if its condition number is large.

Small changes to the input of an ill-conditioned function produce large changes
in output. In applications, it is important to know if a function is ill-conditioned
because there is usually some error in the parameters passed to the function.

Example: the Wilkinson Polynomial

Let f : Cn+1 ! Cn be the function that sends (a1, . . . , am+1) to the roots of
a1xn+a2xn�1+. . .+a

n

x+a
n+1. In other words, this function describes the problem

195

196 Lab 17. Conditioning and Stability

of finding the roots of a polynomial. Unfortunately, root finding is extremely ill-
conditioned.

A classic example is the Wilkinson polynomial

w(x) =
20Y

r=1

(x� r) = x20 � 210x19 + 20615x18 �

We will use NumPy to explore the condition number of f at the coe�cients of w(x).
These coe�cients are contained in the NumPy array w_coeffs below. We also create
an array w_roots containing the roots of w(x).1

>>> import numpy as np

>>> from scipy import linalg as la

>>> w_coeffs = np.array([1, -210, 20615, -1256850, 53327946, -1672280820,

40171771630, -756111184500, 11310276995381,

-135585182899530, 1307535010540395,

-10142299865511450, 63030812099294896,

-311333643161390640, 1206647803780373360,

-3599979517947607200, 8037811822645051776,

-12870931245150988800, 13803759753640704000,

-8752948036761600000, 2432902008176640000])

>>> w_roots = np.arange(1, 21)

Next we perturb the polynomial by changing the x19-coe�cient from �210 to
�210.0000001.

>>> perturb = np.zeros(21)

>>> perturb[1]=1e-7

>>> perturbed_coeffs = w_coeffs - perturb

Now we find the roots of the perturbed polynomial. The function np.poly1d()

creates a polynomial object using the array passed to it as coe�cients, and np.roots

() finds the roots of a polynomial.

>>> perturbed_roots = np.roots(np.poly1d(perturbed_coeffs))

The new roots are plotted with the original roots in Figure 17.1.

Finally we compute an approximation to the condition number. We sort the
roots before we compare them to ensure that they are in the same order.

>>> w_roots = np.sort(w_roots)

>>> perturbed_roots = np.sort(perturbed_roots)

>>> la.norm(perturbed_roots-w_roots)/la.norm(perturb)

68214100.15878984

Thus, the condition number of this problem is something like 107.

When we try to estimate the relative condition number, NumPy will not compute
the 2-norm of w_coeffs because it is so large. NumPy will not compute the square
root of a very large number. One easy solution is to use a di↵erent norm that does
not require the square root.

1 It is possible to create this array in NumPy by expanding the product
Q20

r=1(x�r), for example
using np.poly(). However, this approach is unstable and will give you the wrong coe�cients!

197

Figure 17.1: In these images, blue is associated with w(x) and red is associated
with w(x) perturbed by 1e-7 in the x19-coe�cient. On the left is a plot of the
two polynomials. On the right is a graphical representation of the roots of the
polynomials. The blue dots are the roots of w(x). The red x’s are the roots of the
perturbed polynomial.

>>> # Estimate the absolute condition number in the infinity norm

>>> k = la.norm(perturbed_roots-w_roots, np.inf)/la.norm(perturb, np.inf)

>>> k

28260604.34345689

>>> # Estimate the relative condition number in the infinity norm

>>> k*la.norm(w_coeffs, np.inf)/la.norm(w_roots, np.inf)

1.9505129642488696e+25

As you can see, the order of magnitude of the absolute condition number is the
same as when we computed it with the 2-norm. The relative condition number for
this problem is approximately 1024.

There are some caveats to this example. First, when we compute the quotients
in (17.1) and (17.2) for a fixed �x, we are only approximating the condition number.
The actual condition number is a limit of such quotients. We hope that when ||�x||
is small, a random quotient is at least the same order of magnitude as the limit,
but we have no way to be sure.

Second, this example assumes that NumPy’s root-finding algorithm is stable, so
that the di↵erence between the roots of w_coeffs and perturbed_coeffs is due to the
di↵erence in coe�cients, and not the di↵erence in roots. We will return to this issue
in the next section.

Problem 1. Write a Python function that investigates the condition num-
ber of the Wilkinson polynomial by doing the following.

1. Perform this experiment:

198 Lab 17. Conditioning and Stability

Randomly perturb w(x) by replacing each coe�cient a
i

with
a
i

⇤r
i

, where r
i

is drawn from a normal distribution centered
at 1 with standard deviation 1e� 10.

Plot the results of 100 such experiments in a single graphic, along with
the roots of the unperturbed polynomial w(x). The plot should look
something like Figure 17.2. This exercise reproduces Figure 12.1 on p.
93 of Numerical Linear Algebra by Lloyd N. Trefethen and David Bau
III.

2. Using the final experiment only, estimate the relative and absolute
condition number (in any norm you prefer). Print these numbers to
the screen.

Figure 17.2: Sample result of Problem 1. The blue dots are the roots of w(x)
and the black dots are roots of random perturbations. This figure replicates
Figure 12.1 on p. 93 of Numerical Linear Algebra by Lloyd N. Trefethen and
David Bau III.

Example: Calculating Eigenvalues

Let f : Cn

2 ! Cn be the function that sends an n⇥ n matrix to its n eigenvalues.
This problem is well-conditioned for symmetric matrices, but can be extremely
ill-conditioned for non-symmetric matrices.

Let us use NumPy to calculate the condition number of the eigenvalue problem
at the identity matrix. First we check that the eigenvalue solver is stable here.

>>> M = np.array([[1,0],[0,1]])

>>> eigs = la.eig(M)[0]

199

>>> eigs

array([1.+0.j, 1.+0.j])

Now we perturb M by adding a matrix drawn from a random normal distribution
over the complex numbers. We calculate the eigenvalues of the perturbed matrix.

>>> perturb = np.random.normal(0, 1e-10, M.shape) + np.random.normal(0,1e-10, M. -
shape)*1j

>>> eigsp = la.eig(M+perturb)[0]

Finally we use this data to approximate the condition number.

>>> k = la.norm(eigs-eigsp)/la.norm(perturb) # Absolute condition number

0.62957336119253127

>>> k*la.norm(M)/la.norm(eigs) # Relative condition number

0.62957336119253127

The absolute and relative condition number are the same because la.norm(M) and
la.norm(eigs) are both

p
2.

Problem 2 (Optional). Let us explore the condition number of the eigen-
value problem.

1. (a) Write the following function.

def eig_condit(M):

'''
Approximate the condition number of the eigenvalue problem -

at M.

INPUT:

M - A 2-D NumPy array, representing a matrix.

RETURN:

A tuple containing approximations to the absolute and -
relative condition numbers of the eigenvalue problem -
at M.

'''

(b) Find an example of a 2 ⇥ 2 matrix with a very large condition
number. (Hint: Look at matrices whose o↵-diagonal entries are
very di↵erent in magnitude.)

(c) What is the order of magnitude of the condition number of a
symmetric 2⇥ 2 matrix?

2. Write the following function.

def plot_eig_condit(x0=-100, x1=100, y0=-100, y1=100, res=10):

'''
Plot the condition number of the eigenvalue problem on [x0, x1]x -

[y0,y1].

200 Lab 17. Conditioning and Stability

Specifically, use plt.pcolormesh to plot the relative condition -
number of the eigenvalue problem at [[1,x],[y,1]] on this -
domain.

The variable �res' should be the number of sample points taken -
along each axis, for a total of �res'**2 points in the plot -
.

'''

3. Call your function for res=10, 50, 100, 200 and 400 (output for res =
200 is pictured below). Recall that matplotlib scales the colorbar of
the output to fit the largest and smallest output values. What can you
conclude about the condition number of the eigenvalue problem at a
“random” 2⇥ 2 matrix?

Figure 17.3: Output of plot_eig_condit(res=200).

Stability of an Algorithm

The stability of an algorithm is measured by the error in its output. Suppose
we have some algorithm to compute f : Rm ! Rn. Let f̃(x) represent the value
computed by the algorithm at x. Then the forward error of f at x is ||f(x)� f̃(x)||,
and the relative forward error of f at x is

||f(x)� f̃(x)||
||f(x)|| .

An algorithm is stable if this relative forward error is small.

As an example, let us examine the stability of NumPy’s root finding algorithm

201

that we used to investigate the Wilkinson polynomial. We know the exact roots of
w(x), and we can also compute these roots using NumPy’s np.roots() function.

>>> roots = np.arange(1,21)

>>> w_coeffs = np.array([1, -210, 20615, -1256850, 53327946, -1672280820,

40171771630, -756111184500, 11310276995381,

-135585182899530, 1307535010540395,

-10142299865511450, 63030812099294896,

-311333643161390640, 1206647803780373360,

-3599979517947607200, 8037811822645051776,

-12870931245150988800, 13803759753640704000,

-8752948036761600000, 2432902008176640000])

>>> computed_roots = np.roots(np.poly1d(w_coeffs))

We sort the roots to ensure they are in the same order, then compute the absolute
and relative forward error.

>>> roots = np.sort(roots)

>>> computed_roots = np.sort(computed_roots)

>>> la.norm(roots-computed_roots) # Forward error

0.020612653126379665

>>> la.norm(roots-computed_roots)/la.norm(roots) # Relative forward error

0.00038476268486104599

This analysis gives us hope that questions of stability did not interfere too much
with our experiments in Problem 1.

Catastrophic Cancellation

Catastrophic Cancellation is a term for when a computer takes the di↵erence of two
very similar numbers, and the result is stored with a small number of significant
digits. Because of the way computers store and perform arithmetic on numbers,
future computations can amplify a catastrophic cancellation into a huge error.

You are at risk for catastrophic cancellation whenever you subtract floats or
large integers that are very close to each other. You can avoid the problem either
by rewriting your program to not use subtraction, or by increasing the number of
significant digits that your computer tracks.

Here is an example of catastrophic cancellation. Suppose we wish to computep
a �

p
b. We can either do this subtraction directly or perform the equivalent

division
p
a�

p
b = (

p
a�

p
b)

p
a+

p
b

p
a+

p
b
=

a� b
p
a+

p
b
.

Let us perform this computation both ways in NumPy with a = 1020 + 1 and
b = 1020.

>>> np.sqrt(1e20+1)-np.sqrt(1e20)

0.0

>>> 1/(np.sqrt(1e20+1)+np.sqrt(1e20))

5.0000000000000002e-11

Since a 6= b, clearly
p
a�

p
b should be nonzero.

202 Lab 17. Conditioning and Stability

Problem 3. Let I(n) =
R 1

0
xnex�1dx.

1. Prove that 0  I(n)  1 for all n.

2. It can be shown that for n > 1,

I(n) = (�1)n!n+ (�1)n+1 n!

e

where !n is the subfactorial of n. Use this formula to write the following
function.

def integral(n):

'''Return I(n).'''

Hint: The subfactorial function can be imported from SymPy with the
line from sympy import subfactorial.

3. The actual values of I(n) for many values of n are listed in the table
below. Use your function integral() to compute I(n) for these same
values of n, and create a table comparing the data. How can you
explain what is happening?

n Actual value of I(n)
1 0.367879441171
5 0.145532940573
10 0.0838770701034
15 0.0590175408793
20 0.0455448840758
25 0.0370862144237
30 0.0312796739322
35 0.0270462894091
40 0.023822728669
45 0.0212860390856
50 0.0192377544343

