
Lab 19

Importance Sampling and
Monte Carlo Simulations

Lab Objective: Use importance sampling to reduce the error and variance of
Monte Carlo Simulations.

Introduction

The traditional methods of Monte Carlo integration as discussed in the previous
lab are not always the most e�cient means to estimate an integral. For example,
assume we were trying to find the probability that a randomly chosen variable X
from the standard normal distribution is greater than 3. We know that one way to
solve this is by solving the following integral:

P (X > 3) =

Z 1

3

f
X

(t) dt =
1p
2⇡

Z 1

3

e�t

2
/2 dt (19.1)

If we define the function h : R ! R as

h(t) =

(
1 if t > 3

0 if t 3
,

we can rewrite this integral as

Z 1

3

f
X

(t) dt =

Z 1

�1
h(t)f

X

(t) dt.

By the Law of the Unconscious Statistician (see Volume 2 §3.5), we can restate
the integral above as

Z 1

�1
h(t)f

X

(t) dt = E[h(X)].

Being able to write integrals as expected values is an essential tool in this lab.

211

212 Lab 19. Importance Sampling and Monte Carlo Simulations

Monte Carlo Simulation

In the last section, we expressed the probability of drawing a number greater than
3 from the normal distribution as an expected value problem. We can now easily
estimate this same probabilty using Monte Carlo simulation. Given a random i.i.d.
sample x1, x2, · · · , xN

generated by f
X

, we can estimate E[h(X)] using

bE
n

[h(X)] =
1

N

NX

i=1

h(x
i

) (19.2)

Now that we have defined the estimator, it is now quite manageable to approx-
imate Equation 19.1. By the Weak Law of Large Numbers (see Volume 2 §3.6),
the estimate will get closer and closer to the actual value as we use more and more
sample points.

Problem 1. Write a function in Python that estimates the probability that
a random draw from the standard normal distribution is greater than 3 using
Equation 19.2. Your function should accept a parameter n for the number
of samples to use in your approximation. Your answer should approach
0.0013499 for su�ciently large samples.

Though this approach gets the job done, it turns out that this isn’t very e�cient.
Since the probability of drawing a number greater than 3 from the standard normal
distribution is so unlikely, it turns out we need many sample points to get a good
approximation.

Importance Sampling

Importance sampling is one way to make Monte Carlo simulations converge much
faster. We choose a di↵erent distribution to sample our points to generate more
important points. With our example, we want to choose a distribution that would
generate more numbers around 3 to get a more reliable estimate. The theory behind
importance sampling boils down to the following result. In these equations, the
random variable X is generated by f

X

and the random variable Y is generated by
g
Y

. We will refer to X and Y in this way for the remainder of the lab.

E[h(X)] =

Z 1

�1
h(t)f

X

(t) dt

=

Z 1

�1
h(t)f

X

(t)

✓
g
Y

(t)

g
Y

(t)

◆
dt

=

Z 1

�1

✓
h(t)f

X

(t)

g
Y

(t)

◆
g
Y

(t) dt

= E

h(Y)f

X

(Y)

g
Y

(Y)

�

(19.3)

The corresponding estimator is

213

bE[h(X)] = bE

h(Y)f

X

(Y)

g
Y

(Y)

�

=
1

N

NX

i=1

h(y
i

)f
X

(y
i

)

g
Y

(y
i

)

(19.4)

The function f
X

is the p.d.f. of the target distribution. The function g
Y

is the
p.d.f. of the importance distribution. The fraction fX(X)

gY (X) is called the importance
weight. This allows us to draw a sample from any distribution with p.d.f. g

Y

as
long as we multiply h(X) by the importance weight.

Choosing the Importance Distribution

There is no correct choice for the importance distribution. It may be possible to find
the distribution that allows the simulation to converge the fastest, but oftentimes,
we don’t need a perfect answer. Close to perfect is good enough.

We will solve the same problem as in Problem 1 using importance sampling. We
will choose g

Y

to be the normal distribution with µ = 4 and � = 1. We have chosen
this distribution for g

Y

because it will give us more points closer to and greater
than 3. Note that it is not necessary to choose an importance distribution of the
same type.

Figure 19.1: In our problem, we choose an importance distribution that will generate
more samples that are greater than 3. Though not a perfect choice, choosing a
normal distribution with µ = 4 and � = 1 will su�ce.

>>> from scipy import stats

>>> h = lambda x : x > 3

>>> f = lambda x : stats.norm().pdf(x)

>>> g = lambda x : stats.norm(loc=4,scale=1).pdf(x)

Sample from the N(4,1).

>>> N = 10**7

>>> X = np.random.normal(4,scale=1,size=N)

Calculate estimate.

>>> 1./N * np.sum(h(X)*f(X)/g(X))

0.00134921134631

214 Lab 19. Importance Sampling and Monte Carlo Simulations

Figure 19.2: Comparison of error between standard method Monte Carlo and Im-
portance Sampling method of Monte Carlo.

Problem 2. A tech support hotline receives an average of 2 calls per minute.
What is the probability that they will have to wait at least 10 minutes
to receive 9 calls? Implement your estimator using importance sampling.
Calculate estimates using 5000, 10000, 15000, · · · , 500000 sample points.
Return an array of estimates. Your answers should approach 0.00208726.

Hint: In Volume 2 §3.5, the gamma distribution is defined as,

f
X

(x) =
baxa�1e�xb

�(a)
.

The version of the gamma distribution in scipy.stats is determined by the
shape (a) and the scale (✓) of the distribution.

f
X

(x) =
xa�1e�x/✓

�(a)✓a

You can switch between these representations this with the fact that ✓ = 1/b.

215

Problem 3. In this problem, we will visualize the benefits of importance
sampling. Create a plot of the error of the traditional methods of Monte
Carlo integration and the importance sampling methods of Monte Carlo for
Problem 2. What do you observe? Your plot should resemble Figure 19.2.

Hint: The following code solves Problem 2 using traditional methods of
Monte Carlo integration:

h = lambda x : x > 10

MC_estimates = []

for N in xrange(5000,505000,5000):

X = np.random.gamma(9,scale=0.5,size=N)

MC = 1./N*np.sum(h(X))

MC_estimates.append(MC)

MC_estimates = np.array(MC_estimates)

Hint: To determine the error of your approximations, the following code
returns the actual value of the probability:

1 - stats.gamma(a=9,scale=0.5).cdf(10)

Now that we have visualized the benefits of importance sampling, note that
we can achieve the same results as traditional Monte Carlo with a fraction of the
samples.

Generalizing the Principles of Importance Sampling

The examples we have explored to this point in the lab were merely educational.
Since we have a simple means of calculating the correct answer to Problem 2, it
doesn’t make much sense to use methods of Monte Carlo in this situation. However,
as discussed in the previous lab, there are not always closed-form solutions to the
integrals we want to compute.

We can extend the same principles we have discussed thus far to solve many
types of problems. For a more general problem, we can implement importance
sampling by doing the following:

1. Define a function h where, h(t) =

(
1 if condition is met

0 otherwise
.

2. Define a function f
X

which is the p.d.f. of the target distribution.

3. Define a function g
Y

which is the p.d.f. of the importance distribution.

4. Use these functions in conjunction with Equation (19.4).

216 Lab 19. Importance Sampling and Monte Carlo Simulations

Problem 4. The joint normal distribution of N independent random vari-
ables with mean 0 and variance 1 is

f
X

(x) =
1p

(2⇡)N
e�(xT

x)/2.

The integral of f
X

(x) over a box is the probability that a draw from the
distribution will be in the box. However, f

X

(x) does not have a symbolic
antiderivative.

Use what you have learned about importance sampling to estimate the
probability that a given random variable in R2 generated by f

X

will be less
than -1 in the x-direction and greater than 1 in the y-direction.

Treat f
X

as the p.d.f. of your target distribution. Use the function
stats.multivariate_normal to create a multivariate normal distribution to serve
as your importance distribution. For more information on how to use this
function, consult the documentation for stats.multivariate_normal.

Unnormalized Target Densities

The methods discussed so far are only applicable if the target density is normalized,
or in other words, has an integral of 1. If the target density is not normalized,
Equation 19.3 becomes

E[h(X)] =

R
h(t)f(t) dtR
f(t) dt

=

R
h(t)f(t)

⇣
gY (t)
gY (t)

⌘
dt

R
f(t)

⇣
gY (t)
gY (t)

⌘
dt

=

R ⇣
h(t)f(t)
gY (t)

⌘
g
Y

(t) dt
R ⇣

f(t)
gY (t)

⌘
g
Y

(t) dt

=
E
h
h(Y)f(Y)
gY (Y)

i

E
h

f(Y)
gY (Y)

i

The corresponding estimator becomes

bE
n

[h(X)] =
bE
h
h(Y)f(Y)
gY (Y)

i

bE
h

f(Y)
gY (Y)

i

=
1
N

P
N

i=1
h(yi)f(yi)
gY (yi)

1
N

P
N

i=1
f(yi)
gY (yi)

