
Lab 20

Complex Numbers

Lab Objective: Create visualizations of complex functions. Visually estimate
their zeros and poles, and gain intuition about their behavior in the complex plane.

Representations of Complex Numbers

A complex number z = x+ iy can be written in polar coordinates as rei✓ where

• r =
p
x2 + y2 is the magnitude of z, and

• ✓ = arctan(y/x) is the angle between z and 0, as in Figure 20.1.

Conversely, Euler’s formula implies rei✓ = r cos(✓)+ ir sin(✓). Then if we set rei✓ =
x+ iy and equate real and imaginary parts, we find x = r cos(✓) and y = r sin(✓).

NumPy makes it easy to work with complex numbers and convert between co-
ordinate systems. The function np.angle() returns the angle of a complex number
(between �⇡ and ⇡) and the function np.absolute() returns the magnitude. Use
these to compute ✓ and r, respectively. These functions also operate elementwise
on NumPy arrays.

Note that in Python, 1j is used for the complex number i =
p
�1. See the code

below for an example.

>>> import numpy as np

>>> from matplotlib import pyplot as plt

Set z = 2 - 2i

>>> z = 2 - 2*1j

>>> theta = np.angle(z)

>>> r = np.absolute(z)

np.angle() returns a value between -pi and pi.

>>> print r, theta

(2.8284271247461903, -0.78539816339744828)

Check that z=re^(i*theta)

>>> np.allclose(z, r*np.exp(1j*theta))

True

217

218 Lab 20. Complex Numbers

iy

x

✓

r

Figure 20.1: The complex number represented by the black dot equals both x+ iy
and rei✓, when ✓ is written in radians.

Visualizing complex functions

Suppose we wish to graph a function f(z) : C ! C. The di�culty is that C has 2
real dimensions, so the graph of f should use 4 real dimensions. Since we already
have ways to visualize 3 dimensions, we should choose one dimension to ignore. We
will ignore the magnitude r = |f(z)| of the output.

To visualize f , we will assign a color to each point z 2 C. The color will
correspond to the angle ✓ of the output f(z). As an example, we have plotted the
identity function f(z) = z in Figure 20.2. As ✓ goes from 0 to 2⇡, the colors cycle
smoothly counterclockwise from red to green to purple and back to red.

This kind of plot uses rectangular coordinates in the domain and polar coordi-
nates (or rather, just the ✓-coordinate) in the codomain. Note that this kind of plot
tells us nothing about |f(z)|.

You can create the plot in Figure 20.2 as follows. Begin by creating a grid of
complex numbers. We create the real and imaginary parts separately, and then use
np.meshgrid() to turn them into a single array of complex numbers.

>>> x = np.linspace(-1, 1, 401)

>>> y = np.linspace(-1, 1, 401)

>>> X, Y = np.meshgrid(x, y)

>>> Z = X + 1j*Y

Now we compute the angles of the points in Z and plot them using plt.pcolormesh

(). We use the colormap 'hsv', which is red at both ends, so that 0 and 2⇡ will map
to the same color.

>>> plt.pcolormesh(X, Y, np.angle(Z), cmap='hsv')
>>> plt.show()

Problem 1. Write the following function to plot any function from C to C.
Plot the angle only, as above, ignoring the magnitude.

def plot_complex(f, xbounds, ybounds, res=401):

'''Plot the complex function f.

INPUTS:

219

Figure 20.2: Plot of f : C ! C defined by f(z) = z. The color at each point z
represents the argument of f(z).

f - A function handle. Should represent a function

from C to C.

xbounds - A tuple (xmin, xmax) describing the bounds on the real part

of the domain.

ybounds - A tuple (ymin, ymax) describing the bounds on the imaginary

part of the domain.

res - A scalar that determines the resolution of the plot.

Defaults to 401.

'''

Check your function on f(z) = z (graphed in Figure 20.2) and on the function
f(z) =

p
z2 + 1, which is graphed in Figure 20.3.

Hint: When you call plt.pcolormesh(), specify the keyword arguments vmin
and vmax. These define which values should map to each end of the color
scale. We want �⇡ to map to the low end of the color scale, and ⇡ to map to
the high end. If not specified, matplotlib will scale the colormap to fit your
data exactly.

220 Lab 20. Complex Numbers

Figure 20.3: Plot of the angle of
p
z2 + 1 on the domain {x + iy | x 2 [�3, 3], y 2

[�3, 3]} created by plot_complex().

The choice to ignore the magnitude may seem arbitrary. We can also write a
complex plotting function to ignore the angle and only plot the magnitude. This will
give us some di↵erent intuition about the function, while losing some information
that we would get from the angle plot.

Problem 2. Write a new complex plotting function called plot_complex_magnitude

which ignores the angle and plots only the magnitude. This should resemble
your answer to Problem 1, with small modifications. Leave vmin and vmax un-
specified when plotting.

Check your function on f(z) =
p
z2 + 1. Your plot should look like the

right subplot in Figure 20.4. Note the di↵erence between this plot and the
one from the previous problem.

Hint: A wraparound colormap like 'hsv' doesn’t work well here. Use any
sequential colormap that makes it easy to distinguish between high and low
values. See the matplotlib documentation for a list of colormaps.

221

Figure 20.4: Plots of
p
z2 + 1 on {x + iy | x 2 [�3, 3], y 2 [�3, 3]}, visualizing

the angle and the magnitude of the function. Notice how a discontinuity is clearly
visible on the left, but disappears from the plot on the right.

Analyzing Complex Plots

The angle plot is generally more useful than the magnitude plot for visualizing
function behavior, zeros, and poles. Throughout the rest of the lab, use plot_complex

to plot only the angle, and ignore the magnitude.

Zeros

Complex plots can be surprisingly informative. From an angle plot we can estimate
not only a function’s zeros, but also their multiplicities.

Problem 3.

1. Use plot_complex() to plot the functions z2, z3, and z4.

2. Plot z3 � iz4 � 3z6 on the domain {x + iy | x 2 [�1, 1], y 2 [�1, 1]}
(this plot is Figure 20.5). Compare it to your plot of z3, especially near
the origin. Based on these plots, what can you learn about the zeros
of a function from its graph?

In Problem 3 you should have noticed that in a plot zn, the colors cycle n times
counterclockwise around 0. (Note: For the remainder of this lab we will define red
! yellow ! green ! blue ! red to be the “forward” direction, such that the colors
are circling counterclockwise in Figure 20.2.)

This is explained by looking at zn in polar coordinates:

zn = (rei✓)n = rnei(n✓).

222 Lab 20. Complex Numbers

Figure 20.5: Plot of f(z) = z3 � iz4 � 3z6 on the domain {x+ iy | x 2 [�1, 1], y 2
[�1, 1]}. From this plot we see that f(z) has a zero of order 3 at the origin, and 3
zeros of order 1 scattered around it. This accounts for the 6 roots of f(z) that are
guaranteed to exist by the Fundamental Theorem of Algebra.

Multiplying ✓ by a number greater than 1 compresses the graph along the “✓-axis”
by a factor of n. In other words, the output angle repeats itself n times in one cycle
of ✓. Compare this to replacing f(x) with f(nx) when f is a function from R to R.

From Problem 3 you should also have noticed that the plot of z3�iz4�3z6 looks
a lot like the plot of z3 near the origin. This is because when z is very small, z4

and z6 are much smaller than z3, and so the behavior of z3 dominates the function.

In general, f(z) has a zero of order n at z0 if the Taylor series of f(z) centered
at z0 can be written as

f(z) =
1X

k=n

a
k

(z � z0)
k with a

n

6= 0.

In other words, f(z) = a
n

(z�z0)n+a
n+1(z�z0)n+1+ In a small neighborhood

of z0, the quantity |z � z0|n+k is much smaller than |z � z0|n, and so the function
behaves like a

n

(z � z0)n. This explains why we can estimate the order of a zero by
counting the number of times the colors circle a point (see Figure 20.5).

Poles

The plots created by plot_complex() also contain information about the poles of the
function plotted.

223

Problem 4.

1. Use plot_complex() to plot the function f(z) = 1/z. Compare this to
the plot of f(z) = z in Figure 20.2.

2. Plot z�2, z�3, and z2 + iz�1 + z�3 on the domain {x + iy | x 2
[�1, 1], y 2 [�1, 1]}. Compare the plots of the last two functions near
the origin. Based on these plots, what can you learn about the poles
of a function from its graph?

In Problem 4 you should have noticed that in the graph of 1/zn, the colors cycle
n times clockwise around 0. Again this can be explained by looking at the polar
representation:

z�n = (rei✓)�n = r�nei(�n✓).

The minus-sign on the ✓ reverses the direction of the colors, and the n makes them
cycle n times.

In general, a function has a pole of order n at z0 if its Laurent series on a
punctured neighborhood of z0 is

f(z) =
1X

k=�n

a
k

(z � z0)
k with a�n

6= 0.

In other words, f(z) = a�n

(z�z0)�n+a�n+1(z�z0)�n+1+. . .. Since |z�z0|�n+k is
much smaller than |z�z0|�n when |z�z0| is small, near z0 the function behaves like
a�n

(z � z0)�n. This explains why we can estimate the order of a pole by counting
the number of times the colors circle a point in the clockwise direction.

Finally, a function has an essential pole at z0 if its Laurent series in a punctured
neighborhood of z0 requires infinitely many terms with negative exponents. For
example,

e1/z =
1X

k=0

1

n!zn
= 1 +

1

z
+

1

2

1

z2
+

1

6

1

z3
+

The plot of f(z) = e1/z is in Figure 20.6. The colors cycle infinitely many times
around an essential singularity.

Using Plots to Estimate Poles and Zeros

To summarize, poles and zeros can be estimated from a complex plot with the
following rules.

• Colors circle counterclockwise around zeros.

• Colors circle clockwise around poles.

• The number of times the colors cycle equals the order of the zero or pole.

224 Lab 20. Complex Numbers

Figure 20.6: Plot of e1/z on the domain {x+iy | x 2 [�1, 1], y 2 [�1, 1]}. The colors
circle clockwise around the origin because it is a singularity, not a zero. Because
the singularity is essential, the colors repeat infinitely many times.

Problem 5. Plot these functions on the domains given. Estimate the num-
ber and order of their poles and zeros.

• f(z) = ez on {x+ iy | x 2 [�8, 8], y 2 [�8, 8]}

• f(z) = tan(z) on {x+ iy | x 2 [�8, 8], y 2 [�8, 8]}

• f(z) = 16z4+32z3+32z2+16z+4
16z4�16z3+5z2 on {x+ iy | x 2 [�1, 1], y 2 [�1, 1]}

One useful application of complex plots is to estimate the zeros of polynomials
and their multiplicity.

Problem 6. Use complex plots to determine the multiplicity of the zeros of
each of the following polynomials. Use the Fundamental Theorem of Algebra
to ensure that you have found them all.

1. �4z5 + 2z4 � 2z3 � 4z2 + 4z � 4

2. z7 + 6z6 � 131z5 � 419z4 + 4906z3 � 131z2 � 420z + 4900

Plotting functions is not a substitute for rigorous mathematics. Often, plots can
be deceptive.

225

Problem 7.

1. This example shows that sometimes you have to “zoom in” to see all
the information about a pole.

(a) Plot the function f(z) = sin(1
100z) on the domain {x + iy | x 2

[�1, 1], y 2 [�1, 1]}. What might you conclude about this func-
tion?

(b) Now plot f(z) on {x + iy | x 2 [�.01, .01], y 2 [�.01, .01]}. Now
what do you conclude about the function?

2. This example shows that from far away, two distinct zeros (or poles)
can appear to be a single zero (or pole) of higher order.

(a) Plot the function f(z) = z + 1000z2 on the domain {x+ iy | x 2
[�1, 1], y 2 [�1, 1]}. What does this plot imply about the zeros
of this function?

(b) Calculate the true zeros of f(z).

(c) Plot f(z) on a domain that allows you to see the true nature of
its zeros.

Multi-Valued Functions

Every complex number has two complex square roots, since if w2 = z, then also
(�w)2 = z. If z is not zero, these roots are distinct.

Over the nonnegative real numbers, it is possible to define a continuous square
root function. However, it is not possible to define a continuous square root function
over any open set of the complex numbers that contains 0. This is intuitive after
graphing

p
z on the complex plane.

Problem 8. 1. Use plot_complex to graph f(z) =
p
z. Use np.sqrt() to

take the square root.

2. Now plot f(z) = �
p
z to see the “other square root” of z. Describe

why these two plots look the way they do.

Just as raising z to a positive integer “compresses the ✓-axis”, making the color
wheel repeat itself n times around 0, raising z to a negative power stretches the
✓-axis, so that only one nth of the color wheel appears around 0. The colors at the
ends of this nth-slice are not the same, but they appear next to each other in the
plot of z�n. This discontinuity will appear in every neighborhood of the origin.

If your domain does not contain the origin, it is possible to define a continuous
root function by picking one of the roots.

226 Lab 20. Complex Numbers

Appendix

It is possible to visualize the argument and the modulus of the output of a complex
function f(z). One way to do so is to assign the modulus to a lightness of color.
For example, suppose we have a complex number with argument 0, so it will map
to red in the color plots described above. If its modulus is very small, then we can
map it to a blackish red, and if its modulus is large, we can map it to a whitish red.
With this extra rule, our complex plots will still be very much the same, except
that zeros will look like black dots and poles will look like white dots (see Figure
20.7 for an example).

The code below implements the map we just described. Be warned that this
implementation does not scale well. For example, if you try to plot a complex
function whose outputs are all very small in modulus, the entire plot will appear
black.

import numpy as np

import matplotlib.pyplot as plt

from colorsys import hls_to_rgb

def colorize(z):

'''
Map a complex number to a color (or hue) and lightness.

INPUT:

z - an array of complex numbers in rectangular coordinates

OUTPUT:

If z is an n x m array, return an n x m x 3 array whose third axis encodes

(hue, lightness, saturation) tuples for each entry in z. This new array can

be plotted by plt.imshow().

'''

zy=np.flipud(z)

r = np.abs(zy)

arg = np.angle(zy)

Define hue (h), lightness (l), and saturation (s)

Saturation is constant in our visualizations

h = (arg + np.pi) / (2 * np.pi) + 0.5

l = 1.0 - 1.0/(1.0 + r**0.3)

s = 0.8

Convert the HLS values to RGB values.

This operation returns a tuple of shape (3,n,m).

c = np.vectorize(hls_to_rgb) (h,l,s)

Convert c to an array and change the shape to (n,m,3)

c = np.array(c)

c = c.swapaxes(0,2)

c = c.swapaxes(0,1)

return c

The following code uses the colorize() function to plot z

2�1
z

. The output is
Figure 20.7.

>>> f = lambda z : (z**2-1)/z

227

Figure 20.7: Plot of the function z

2�1
z

created with colorize(). Notice that the zero
at 1 is a black dot and the pole at 0 is a white dot.

>>> x = np.linspace(-.5, 1.5, 401)

>>> y = np.linspace(-1, 1, 401)

>>> X,Y = np.meshgrid(x,y)

>>> Z=f(X+Y*1j)

>>> Zc=colorize(Z)

>>> plt.imshow(Zc, extent=(-.5, 1.5, -1, 1))

>>> plt.show()

