
Lab 19

Profiling

Lab Objective: The best code goes through multiple drafts. In a first draft, you
should focus on writing code that does what it is supposed to and is easy to read.
Once you have working code, you may need to speed it up to meet the demands of
the application. In this lab we learn to identify the parts of code that take the most
time to run and how speed up slow code.

In this lab we will optimize the function qr1() that computes the QR decompo-
sition of a matrix via the modified Gram-Schmidt algorithm.

import numpy as np

from scipy import linalg as la

def qr1(A):

ncols = A.shape[1]

Q = A.copy()

R = np.zeros((ncols, ncols))

for i in range(ncols):

R[i, i] = la.norm(Q[:, i])

Q[:, i] = Q[:, i]/la.norm(Q[:, i])

for j in range(i+1, ncols):

R[i, j] = Q[:, j].dot(Q[:, i])

Q[:,j] = Q[:,j]-Q[:, j].dot(Q[:, i])*Q[:,i]

return Q, R

Profiling Slow Code

Python provides a profiler that can identify where code spends most of its runtime.
The output of the profiler will tell you where to begin your optimization e↵orts. In
IPython1, you can profile a function with %prun. Here we profile qr1() on a random
300⇥ 300 array.

In [1]: A = np.random.random((300, 300))

1If you are not using IPython, you will need to use the cProfile module documented here:
https://docs.python.org/2/library/profile.html.
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In [2]: %prun qr1(A)

On the author’s computer, we get the following output.

97206 function calls in 1.343 seconds

Ordered by: internal time

ncalls tottime percall cumtime percall filename:lineno(function)
1 0.998 0.998 1.342 1.342 profiling.py:4(qr1)

89700 0.319 0.000 0.319 0.000 {method ’dot’ of ’numpy.ndarray’ objects}
600 0.006 0.000 0.012 0.000 function_base.py:526(asarray_chkfinite)
600 0.006 0.000 0.009 0.000 linalg.py:1840(norm)

1200 0.005 0.000 0.005 0.000 {method ’any’ of ’numpy.ndarray’ objects}
600 0.002 0.000 0.002 0.000 {method ’reduce’ of ’numpy.ufunc’ objects}

1200 0.001 0.000 0.001 0.000 {numpy.core.multiarray.array}
1200 0.001 0.000 0.002 0.000 numeric.py:167(asarray)

1 0.001 0.001 0.001 0.001 {method ’copy’ of ’numpy.ndarray’ objects}
600 0.001 0.000 0.022 0.000 misc.py:7(norm)
301 0.001 0.000 0.001 0.000 {range}

1 0.001 0.001 0.001 0.001 {numpy.core.multiarray.zeros}
600 0.001 0.000 0.001 0.000 {method ’ravel’ of ’numpy.ndarray’ objects}
600 0.000 0.000 0.000 0.000 {method ’conj’ of ’numpy.ndarray’ objects}

1 0.000 0.000 1.343 1.343 <string>:1(<module>)
1 0.000 0.000 0.000 0.000 {method ’disable’ of ’_lsprof.Profiler’ objects}

The first line of the output tells us that executing qr1(A) results in almost 100,000
function calls. Then we see a table listing these functions along with data telling
us how much time each takes. Here, ncalls is the number of calls to the function,
tottime is the total time spent in the function, and cumtime is the amount of time
spent in the function including calls to other functions.

For example, the first line of the table is the function qr1(A) itself. This function
was called once, it took 1.342s to run, and 0.344s of that was spent in calls to other
functions. Of that 0.344s, there were 0.319s spent on 89,700 calls to np.dot().

With this output, we see that most time is spent in multiplying matrices. Since
we cannot write a faster method to do this multiplication, we may want to try to
reduce the number of matrix multiplications we perform.

Speeding Up Code

Once you have identified those parts of your code that take the most time, how do
you make them run faster? Here are some of the techniques we will address in this
lab:

• Avoid recomputing values

• Avoid nested loops

• Use existing functions instead of writing your own

• Use generators when possible

• Avoid excessive function calls

• Write Pythonic code

• Compiling Using Numba
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• Use a more e�cient algorithm

You should always use the profiling and timing functions to help you decide
when an optimization is actually useful.

Problem 1. In this lab, we will perform many comparisons between the
runtimes of various functions. To help with these comparisions, implement
the following function:

def compare_timings(f, g, *args):

"""Compare the timings of 'f' and 'g' with arguments '*args'.

Inputs:

f (func): first function to compare.

g (func): second function to compare.

*args: arguments to use when callings functions 'f' and 'g',
i.e., call f with f(*args).

Returns:

comparison (str): The comparison of the runtimes of functions

'f' and 'g' in the following format:

Timing for <f>: <time>

Timing for <g>: <time>

"""

(Hint: You can gain access to the name of many functions by using its
func_name() method. However, this method does not exist for all functions
we will be interested in timing. Therefore, even though it is not as clean, use
str(f) to print a string representation of f.)

Avoid Recomputing Values

In our function qr1(), we can avoid recomputing R[i,i] in the outer loop and R[i,j]

in the inner loop. The rewritten function is as follows:

def qr2(A):

ncols = A.shape[1]

Q = A.copy()

R = np.zeros((ncols, ncols))

for i in range(ncols):

R[i, i] = la.norm(Q[:, i])

Q[:, i] = Q[:, i]/R[i, i] # this line changed

for j in range(i+1, ncols):

R[i, j] = Q[:, j].dot(Q[:, i])

Q[:,j] = Q[:,j]-R[i, j]*Q[:,i] # this line changed

return Q, R

Profiling qr2() on a 300⇥ 300 matrix produces the following output.

48756 function calls in 1.047 seconds

Ordered by: internal time

ncalls tottime percall cumtime percall filename:lineno(function)
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1 0.863 0.863 1.047 1.047 profiling.py:16(qr2)
44850 0.171 0.000 0.171 0.000 {method ’dot’ of ’numpy.ndarray’ objects}

300 0.003 0.000 0.006 0.000 function_base.py:526(asarray_chkfinite)
300 0.003 0.000 0.005 0.000 linalg.py:1840(norm)
600 0.002 0.000 0.002 0.000 {method ’any’ of ’numpy.ndarray’ objects}
300 0.001 0.000 0.001 0.000 {method ’reduce’ of ’numpy.ufunc’ objects}
301 0.001 0.000 0.001 0.000 {range}
600 0.001 0.000 0.001 0.000 {numpy.core.multiarray.array}
600 0.001 0.000 0.001 0.000 numeric.py:167(asarray)
300 0.000 0.000 0.012 0.000 misc.py:7(norm)

1 0.000 0.000 0.000 0.000 {method ’copy’ of ’numpy.ndarray’ objects}
300 0.000 0.000 0.000 0.000 {method ’ravel’ of ’numpy.ndarray’ objects}

1 0.000 0.000 1.047 1.047 <string>:1(<module>)
300 0.000 0.000 0.000 0.000 {method ’conj’ of ’numpy.ndarray’ objects}

1 0.000 0.000 0.000 0.000 {numpy.core.multiarray.zeros}
1 0.000 0.000 0.000 0.000 {method ’disable’ of ’_lsprof.Profiler’ objects}

Our optimization reduced almost every kind of function call by half, and reduced
the total run time by 0.295s.

Some less obvious ways to eliminate excess computations include moving compu-
tations out of loops, not copying large data structures, and simplifying mathematical
expressions.

Avoid Nested Loops

For many algorithms, the temporal complexity of an algorithm is determined by its
loops. Nested loops quickly increase the temporal complexity. The best way to avoid
nested loops is to use NumPy array operations instead of iterating through arrays.
If you must use nested loops, focus your optimization e↵orts on the innermost loop,
which gets called the most times.

Problem 2. The code below is an ine�cient implementation of the LU al-
gorithm. Write a function LU_opt() that is an optimized version of LU(). Look
for ways to avoid recomputing values and avoid nested loops by using array
slicing instead. Print a comparison of the timing of the original function and
your optimized function using your compare_timings() function.

def LU(A):

"""Return the LU decomposition of a square matrix."""

n = A.shape[0]

U = np.array(np.copy(A), dtype=float)

L = np.eye(n)

for i in range(1, n):

for j in range(i):

L[i,j] = U[i,j] / U[j,j]

for k in range(j, n):

U[i,k] -= L[i,j] * U[j,k]

return L, U

Use Built-in Functions

If there is an intuitive operation you would like to perform on an array, chances
are that NumPy or another library already has a function that does it. Python



203

and NumPy functions have already been optimized, and are usually many times
faster than the equivalent you might write. We saw an example of this in Lab ??

where we compared NumPy array multiplication with our own matrix multiplication
implemented in Python.

Problem 3. Without using any builtin functions, implement the following
function.

def mysum(x):

"""Return the sum of the elements of X without using a built-in  -
function.

Inputs:

x (iterable): a list, set, 1-d NumPy array, or another iterable.

"""

Compare mysum() to Python’s builtin sum() function and NumPy’s np.sum()
using your compare_timings() function.

Use Generators

When you are iterating through a list, you can often replace the list with a generator.
Instead of storing the entire list in memory, a generator computes each item as it
is needed. For example, the code

>>> for i in range(100):

... print i

stores the numbers 0 to 99 in memory, looks up each one in turn, and prints it. On
the other hand, the code

>>> for i in xrange(100):

... print i

uses a generator instead of a list. This code computes the first number in the
specified range (which is 0), and prints it. Then it computes the next number
(which is 1) and prints that.

In our example, replacing each range() with xrange() does not speed up qr2() by
a noticeable amount.

Though the example below is contrived, it demonstrates the benefits of using
generators.

# both these functions will return the first iterate of a loop of length 10^8.

def list_iter():

for i in range(10**8): # Use range()

return i

def generator_iter():

for i in xrange(10**8): # Use xrange()

return i
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>>> compare_timings(list_iter,generator_iter)

Timing for <function list_iter at 0x7f3deb5a4488>: 1.93316888809

Timing for <function generator_iter at 0x7f3deb5a4500>: 1.19209289551e-05

It is also possible to write your own generators. Say we have a function that
returns an array. And say we want to iterate through this array later in our code. In
situations like these, it is valuable to consider turning your function into a generator
instead of returning the whole list. The benefits of this approach mirror the benefits
of using xrange() instead of range(). The only thing that needs to be adjusted is to
change the return statement to a yield statement. Here is a quick example:

def return_squares(n):

squares = []

for i in xrange(1,n+1):

squares.append(i**2)

return squares

def yield_squares(n):

for i in xrange(1,n+1):

yield i**2

The yield statement “returns” the single value, but all the local variables for the
function are stored away until the next iteration. To iterate step-by-step through a
generator, use the builtin next() function..

>>> squares = yield_squares(3)

>>> next(squares)

1

>>> next(squares)

4

>>> next(squares)

9

We can also iterate through a generator using a for loop.

>>> for s in yield_squares(3):

... print s,

...

1 4 9

Problem 4. The Fibonacci sequence is defined by the recurrence relation
F
n+1 = F

n

+ F
n�1, where F1 = F2 = 1. Write a generator that yields the

first n Fibonacci numbers.

If you are interested in learning more about writing your own generators, see
https://docs.python.org/2/tutorial/classes.html#generators and https:

//wiki.python.org/moin/Generators.

https://docs.python.org/2/tutorial/classes.html#generators
https://wiki.python.org/moin/Generators
https://wiki.python.org/moin/Generators
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Avoid Excessive Function Calls

Function calls take time. Moreover, looking up methods associated with objects
takes time. Removing “dots” can significantly speed up execution time.

For example, we could rewrite our function to reduce the number of times we
need to look up the function la.norm().

def qr2(A):

norm = la.norm # This reduces the number of function lookups.

ncols = A.shape[1]

Q = A.copy()

R = np.zeros((ncols, ncols))

for i in range(ncols):

R[i, i] = norm(Q[:, i])

Q[:, i] = Q[:, i]/R[i, i]

for j in range(i+1, ncols):

R[i, j] = Q[:, j].dot(Q[:, i])

Q[:,j] = Q[:,j]-R[i, j]*Q[:,i]

return Q, R

Once again, an analysis with %prun reveals that this optimization does not help
significantly in this case.

Write Pythonic Code

Several special features of Python allow you to write fast code easily. First, list
comprehensions are much faster than for loops. These are particularly useful when
building lists inside a loop. For example, replace

>>> mylist = []

>>> for i in xrange(100):

... mylist.append(math.sqrt(i))

with

>>> mylist = [math.sqrt(i) for i in xrange(100)]

We can accomplish the same thing using the map() function, which is even faster.

>>> mylist = map(math.sqrt, xrange(100))

The analog of a list comprehension also exists for generators, dictionaries, and
sets.

Second, swap values with a single assignment.

>>> a, b = 1, 2

>>> a, b = b, a

>>> print a, b

2 1

Third, many non-Boolean objects in Python have truth values. For example,
numbers are False when equal to zero and True otherwise. Similarly, lists and strings
are False when they are empty and True otherwise. So when a is a number, instead
of
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>>> if a != 0:

use

>>> if a:

Lastly, it is more e�cient to iterate through lists by iterating over the elements
instead of iterating over the indices.

# Bad

for i in xrange(len(my_list)):

print my_list[i],

# Good

for x in my_list:

print x,

However, there are situations where you will need to know the indices of the
elements over which you are iterating. In these situations, use enumerate.

Problem 5. Consider the following poorly-written function.

def foo(n):

my_list = []

for i in range(n):

num = np.random.randint(-9,9)

my_list.append(num)

evens = 0

for j in range(n):

if my_list[j] % 2 == 0:

evens += my_list[j]

return my_list, evens

Walk through the code line by line to determine what the code is ac-
complishing. Using %prun, find out which portions of the code below require
the most runtime. Rewrite the function to perform the same task in a more
e�cient way using the optimization techniques we have discussed.

Numba

Though it is much easier to write simple, readable code in Python, it is also much
slower than compiled languages such as C. Compiled languages, in general, are much
faster. Numba is a tool that uses just-in-time (JIT) compilation to optimize code,
meaning that the code is compiled right before it is executed. We will discuss this
process a bit later in this section.

The API for using Numba is incredibly simple. All one has to do is import
Numba and add the @jit function decorator to your function. The following code
would be a Numba equivalent to Problem 3.
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from numba import jit

@jit

def numba_sum(A):

total = 0

for x in A:

total += x

return total

Though this code looks very simple, a lot is going on behind the scenes. One of
the reasons compiled languages like C are so much faster than Python is because
they have explicitly defined datatypes. The main strategy used by Numba is to
speed up the Python code by assigning datatypes to all the variables. Rather than
requiring us to define the datatypes explicitly as we would need to in any compiled
language, Numba attempts to infer the correct datatypes based on the datatypes
of the input.

In the code above, for example, say that our array A was an array of integers.
Though we have not explicitly defined a datatype for the variable total, Numba will
infer that the datatype for total should also be an integer.

Once all the datatypes have been inferred and assigned, the code is translated
to machine code by the LLVM library. Numba will then cache this compiled version
of our code. This means that we can bypass this whole inference and compilation
process the next time we run our function.

More Control Within Numba

Though the inference engine within Numba does a good job, it’s not always perfect.
There are times that Numba is unable to infer all the datatypes correctly.

If you add the keyword argument, nopython=True to the jit decorator, an error
will be raised if Numba was unable to convert everything to explicit datatypes.

If your function is running slower than you would expect, you can find out what
is going on under the hood by calling the inspect_types() method of the function.
Using this, you can see if all the datatypes are being assigned as you would expect.

# Due to the length of the output, we will leave it out of the lab text.

>>> numba_sum.inspect_types()

If you would like to have more control, you may specify datatypes explicity as
demonstrated in the code below.

In this example, we will assume that the input will be doubles. Note that is
necessary to import the desired datatype from the Numba module.

from numba import double

# The values inside 'dict' will be specific to your function.

@jit(nopython=True, locals=dict(A=double[:], total=double))

def numba_sum(A):

total = 0

for i in xrange(len(A)):

total += A[i]

return total
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Notice that the jit function decorator is the only thing that changed. Note also
that this means that we will not be allowed to pass an array of integers to this
function. If we had not specified datatypes, the inference engine would allow us to
pass arrays of any numerical datatype. In the case that our function sees a datatype
that it has not seen before, the inference and compilation process would have to be
repeated. As before, the new version will also be cached.

Problem 6. The code below defines a Python function which takes a matrix
to the nth power.

def pymatpow(X, power):

"""Return X^{power}, the matrix product XX...X, 'power' times.

Inputs:

X ((n,n) ndarray): A square matrix.

power (int): The power to which to raise X.

"""

prod = X.copy()

temparr = np.empty_like(X[0])

size = X.shape[0]

for n in xrange(1, power):

for i in xrange(size):

for j in xrange(size):

tot = 0.

for k in xrange(size):

tot += prod[i,k] * X[k,j]

temparr[j] = tot

prod[i] = temparr

return prod

1. Create a function numba_matpow() that is the compiled version of pymatpow
() using Numba.

2. Write a function numpy_matpow() that performs the same task as pymatpow

but uses np.dot(). Compile this function using Numba.

3. Compare the speed of pymatpow(), numba_matpow() and the numpy_matpow

() function. Remember to time numba_matpow() and numpy_matpow() on
the second pass so the compilation process is not part of your timing.
Perform your comparisons using your compare_timings() function.

NumPy takes products of matrices by calling BLAS and LAPACK, which
are heavily optimized linear algebra libraries written in C, assembly, and
Fortran.

Achtung!

NumPy’s array methods are often faster than a Numba equivalent that you



209

could code yourself. If you are unsure which method is fastest, time them.

Use a More E�cient Algorithm

The optimizations discussed thus far will speed up your code at most by a constant.
They will not change the complexity of your code. In order to reduce the complexity
(say from O(n2) to O(n log(n))), you typically need to change your algorithm. We
will address the benefits of using more e�cient algorithms in Problem 7.

A good algorithm written with a slow language (like Python) is faster than a bad
algorithm written in a fast language (like C). Hence, focus on writing fast algorithms
with good Python code, and only Numba when and where it is necessary. In other
words, Numba will not always save you from a poor algorithm design.

The correct choice of algorithm is more important than a fast implementation.
For example, suppose you wish to solve the following tridiagonal system.

Ax =

2

666666664

b1 c1 0 0 · · · · · · 0
a2 b2 c2 0 · · · · · · 0
0 a3 b3 c3 · · · · · · 0
...

...
...

...
. . .

. . .
...

...
...

...
...

. . .
. . . c

n�1

0 0 0 0 · · · a
n

b
n

3

777777775

2

666666664

x1

x2

x3

...

...
x
n

3

777777775

=

2

666666664

d1
d2
d3
...
...
d
n

3

777777775

= d

One way to do this is with the solve() method in SciPy’s linalg module. Alter-
natively, you could use an algorithm optimized for tridiagonal matrices. The code
below implements one such algorithm in Python called the Thomas algorithm.

def pytridiag(a,b,c,d):

"""Solve the tridiagonal system Ax = d where A has diagonals a, b, and c.

Inputs:

a ((n-1,) ndarray): first subdiagonal of A.

b ((n,) ndarray): main diagonal of A.

c ((n-1,) ndarray): first superdiagonal of A.

d ((n,) ndarray): the right side of the linear system.

Returns:

x ((n,) array): solution to the tridiagonal system Ax = d.

"""

n = len(b)

# Make copies so the original arrays remain unchanged.

aa = np.copy(a)

bb = np.copy(b)

cc = np.copy(c)

dd = np.copy(d)

# Forward sweep.

for i in xrange(1, n):

temp = aa[i-1] / bb[i-1]

bb[i] = bb[i] - temp*cc[i-1]

dd[i] = dd[i] - temp*dd[i-1]
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# Back substitution.

x = np.zeros_like(b)

x[-1] = dd[-1] / bb[-1]

for i in reversed(xrange(n-1)):

x[i] = (dd[i] - cc[i]*x[i+1]) / bb[i]

return x

Problem 7.

1. Write a function that is a compiled version of pytridiag().

2. Compare the speed of your new function with pytridiag() and scipy

.linalg.solve(). When comparing numba_tridiag() and pytridiag(), use
1000000⇥1000000 sized systems. When comparing numba_tridiag() and
the SciPy algorithm, use a 1000⇥ 1000 systems.

You may use the code below to generate the arrays a, b, and c, as well as the
matrix A.

def init_tridiag(n):

"""Construct a random nxn tridiagonal matrix A by diagonals.

Inputs:

n (int): The number of rows / columns of A.

Returns:

a ((n-1,) ndarray): first subdiagonal of A.

b ((n,) ndarray): main diagonal of A.

c ((n-1,) ndarray): first superdiagonal of A.

A ((n,n) ndarray): the tridiagonal matrix.

"""

a = np.random.random_integers(-9, 9, n-1).astype("float")

b = np.random.random_integers(-9 ,9, n ).astype("float")

c = np.random.random_integers(-9, 9, n-1).astype("float")

# Replace any zeros with ones.

a[a==0] = 1

b[b==0] = 1

c[c==0] = 1

# Construct the matrix A.

A = np.zeros((b.size,b.size))

np.fill_diagonal(A, b)

np.fill_diagonal(A[1:,:-1], a)

np.fill_diagonal(A[:-1,1:], c)

return a, b, c, A

Note that an e�cient tridiagonal matrix solver is implemented by scipy.

sparse.linalg.spsolve().
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When to Stop Optimizing

You don’t need to apply every possible optimization to your code. When your code
runs acceptably fast, stop optimizing. There is no need spending valuable time
making optimizations once the speed is su�cient.

Moreover, remember not to prematurely optimize your functions. Make sure
the function does exactly what you want it to before worrying about any kind of
optimization.


