
Lab 6

Exceptions and File I/O

Lab Objective: In Python, an exception is an error detected during execution.

Exceptions are important for regulating program usage and for correctly reporting

problems to the programmer and end user. Understanding exceptions allows us to

safely read data from and export data to external files, and being able to read from

and write to files is important to analyzing data and communicating results. In this

lab we present exception syntax and file interaction protocols.

Exceptions

Every programming language has a formal way of indicating and handling errors.
In Python, we raise and handle exceptions. Some of the more common exceptions
are listed below, along with the kinds of problems that they typically indicate.

Exception Indication
AttributeError An attribute reference or assignment failed.

IndexError A sequence subscript was out of range.
NameError A local or global name was not found.

SyntaxError The parser encountered a syntax error.
TypeError An operation or function was applied to an object of

inappropriate type.
ValueError An operation or function received an argument that had

the right type but an inappropriate value.

>>> print(x)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name 'x' is not defined

>>> [1, 2, 3].fly()

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

AttributeError: 'list' object has no attribute 'fly'

77

78 Lab 6. Exceptions and File I/O

See https://docs.python.org/2/library/exceptions.html for the complete
list of Python’s built-in exception classes.

Raising Exceptions

Many exceptions, like the ones demonstrated above, are due to coding mistakes and
typos. Exceptions can also be used intentionally to indicate a problem to the user
or programmer. To create an exception, use the keyword raise, followed by the
name of the exception class. As soon as an exception is raised, the program stops
running unless the exception is handled properly.

Exception objects can be initialized with any number of arguments. These
arguments are stored as a tuple attribute called args, which serves as the string
representation of the object. We typically provide a single string detailing the
reasons for the error.

Raise a generic exception, without an error message.

>>> if 7 is not 7.0:

... raise Exception

...

Traceback (most recent call last):

File "<stdin>", line 2, in <module>

Exception

Now raise a more specific exception, with an error message included.

>>> for x in range(10):

... if x > 5:

... raise ValueError("'x' should not exceed 5.")

... print(x),

...

0 1 2 3 4 5

Traceback (most recent call last):

File "<stdin>", line 3, in <module>

ValueError: 'x' should not exceed 5.

Problem 1. Consider the following arithmetic “magic” trick.

1. Choose a 3-digit number where the first and last digits di↵er by 2 or
more (for example, 123).

2. Reverse this number by reading it backwards (321).

3. Calculate the positive di↵erence of these numbers (321� 123 = 198).

4. Add the reverse of the result to itself (198 + 891 = 1089).

The result of the last step will always be 1089, regardless of the original
number chosen in step 1 (can you explain why?).

The following function prompts the user for input at each step of the
magic trick, but does not check that the user’s inputs are correct.

https://docs.python.org/2/library/exceptions.html

79

def arithmagic():

step_1 = raw_input("Enter a 3-digit number where the first and last "

"digits differ by 2 or more: ")

step_2 = raw_input("Enter the reverse of the first number, obtained "

"by reading it backwards: ")

step_3 = raw_input("Enter the positive difference of these numbers: ")

step_4 = raw_input("Enter the reverse of the previous result: ")

print str(step_3) + " + " + str(step_4) + " = 1089 (ta-da!)"

Modify arithmagic() so that it verifies the user’s input at each step. Raise
a ValueError with an informative error message if any of the following occur:

1. The first number (step_1) is not a 3-digit number.

2. The first number’s first and last digits di↵er by less than 2.

3. The second number (step_2) is not the reverse of the first number.

4. The third number (step_3) is not the positive di↵erence of the first two
numbers.

5. The fourth number (step_4) is not the reverse of the third number.

(Hint: raw_input() always returns a string, so each variable is a string initially.
Use int() to cast the variables as integers when necessary. The built-in
function abs() may also be useful.)

Handling Exceptions

To prevent an exception from halting the program, it must be handled by placing
the problematic lines of code in a try block. An except block then follows.

The 'try' block should hold any lines of code that might raise an exception.

>>> try:

... raise Exception("for no reason")

... print "No exception raised"

... # The 'except' block is executed when an exception is raised.

... except Exception as e:

... print "Exception raised", e

...

Exception raised for no reason

>>> # The program then continues on.

In this example, the name e represents the exception within the except block.
Printing e displays its error message.

80 Lab 6. Exceptions and File I/O

The try-except control flow can be expanded with two other blocks. The flow
proceeds as follows:

1. The try block is executed until an exception is raised, if at all.

2. An except statement specifying the same kind of exception that was raised in
the try block “catches” the exception, and the block is then executed. There
may be multiple except blocks following a single try block (similiar to having
several elif statements following a single if statement), and a single except
statement may specify multiple kinds of exceptions to catch.

3. The optional else block is executed if an exception was not raised in the try
block. Thus either an except block or the else block is executed, but not both.

4. Lastly, the optional finally block is always executed if it is included.

>>> try:

... raise ValueError("The house is on fire!")

... # Check for multiple kinds of exceptions using parentheses.

... except (ValueError, TypeError) as e:

... house_on_fire = True

... else: # Skipped due to the exception.

... house_on_fire = False

... finally:

... print "The house is on fire:", house_on_fire

...

The house is on fire: True

>>> try:

... house_on_fire = False

... except Exception as e:

... house_on_fire = True

... else: # Executed because there was no exception.

... print "The house is probably okay."

... finally:

... print "The house is on fire:", house_on_fire

...

The house is probably okay.

The house is on fire: False

The code in the finally block is always executed, even if a return statement or
an uncaught exception occurs in any block following the try statement.

>>> try:

... raise ValueError("The house is on fire!")

... finally: # Executes before the error is reported.

... print "The house may be on fire."

...

The house may be on fire.

Traceback (most recent call last):

File "<stdin>", line 2, in <module>

ValueError: The house is on fire!

See https://docs.python.org/2/tutorial/errors.html for more examples.

https://docs.python.org/2/tutorial/errors.html

81

Problem 2. A random walk is a path created by a series of random steps.
The following function simulates a random walk where at every step, we
either step forward (adding 1 to the total) or backward (adding �1).

from random import choice

def random_walk(max_iters=1e12):

walk = 0

direction = [1, -1]

for i in xrange(int(max_iters)):

walk += choice(direction)

return walk

A KeyboardInterrupt is a special exception that can be triggered at any time
by entering ctrl c (on most systems) in the keyboard. Modify random_walk() so
that if the user raises a KeyboardInterrupt, the function handles the exception
and prints “Process interrupted at iteration i”. If no KeyboardInterrupt is
raised, print “Process completed”. In both cases, return walk as before.

Note

The built-in Python exceptions are organized into a class hierarchy. This can
lead to some confusing behavior.

>>> try:

... raise ValueError("This is a ValueError!")

... except StandardError as e:

... print(e)

...

This is a ValueError! # The exception was caught.

>>> try:

... raise StandardError("This is a StandardError!")

... except ValueError as e:

... print(e)

...

Traceback (most recent call last):

File "<stdin>", line 2, in <module>

StandardError: This is a StandardError! # The exception wasn't caught!

It turns out that the ValueError class inherits from the StandardError class.
Thus a ValueError is a StandardError, so the first except statement was able
to catch the exception, but a StandardError is not a ValueError, so the second
except statement could not catch the exception.

The complete exception class hierarchy is documented at https://docs.
python.org/2/library/exceptions.html#exception-hierarchy.

https://docs.python.org/2/library/exceptions.html#exception-hierarchy
https://docs.python.org/2/library/exceptions.html#exception-hierarchy

82 Lab 6. Exceptions and File I/O

File Input and Output

Python has a useful file object that acts as an interface to all kinds of di↵erent file
streams. The built-in function open() creates a file object. It accepts the name of
the file to open and an editing mode. The mode determines the kind of access to
use when opening the file. There are three common options:

'r': read. This is the default mode. The file must already exist.

'w': write. This mode creates the file if it doesn’t already exist and overwrites

everything in the file if it does already exist.

'a': append. New data is written to the end of the file. This mode also creates
a new file if it doesn’t already exist.

>>> myfile = open("in.txt", 'r') # Open 'in.txt' with read-only access.

>>> print(myfile.read()) # Print the contents of the file.

Hello World! # (it's a really small file.)

>>> myfile.close() # Close the file connection.

The With Statement

An IOError indicates that some input or output operation has failed. If a file cannot
be opened for any reason, an IOError is raised and the file object is not initialized.
A simple try-finally control flow can ensure that a file stream is closed safely.

The with statement provides an alternative method for safely opening and closing
files. Use with open(<filename>, <mode>) as <alias>: to create an indented block in
which the file is open and available under the specified alias. At the end of the
block, the file is automatically closed. This is the preferred file-reading method
when a file only needs to be accessed briefly. The more flexible try-finally approach
is typically better for working with several file streams at once.

>>> myfile = open("in.txt", 'r') # Open 'in.txt' with read-only access.

>>> try:

... contents = myfile.readlines() # Read in the content by line.

... finally:

... myfile.close() # Explicitly close the file.

Equivalently, use a 'with' statement to take care of errors.

>>> with open("in.txt", 'r') as myfile: # Open 'in.txt' with read-only access.

... contents = myfile.readlines() # Read in the content by line.

... # The file is closed automatically.

In both cases, if the file in.txt does not exist in the current directory, an IOError

will be raised. However, errors in the try or with blocks will not prevent the file
from being safely closed.

83

Reading and Writing

Open file objects have an implicit cursor that determines the location in the file to
read from or write to. After the entire file has been read once, either the file must
be closed and reopened, or the cursor must be reset to the beginning of the file with
seek(0) before it can be read again.

Some of more important file object attributes and methods are listed below.

Attribute Description
closed True if the object is closed.

mode The access mode used to open the file object.
name The name of the file.

Method Description
close() Close the connection to the file.
read() Read a given number of bytes; with no input, read the entire file.

readline() Read a line of the file, including the newline character at the end.
readlines() Call readline() repeatedly and return a list of the resulting lines.

seek() Move the cursor to a new position.
tell() Report the current position of the cursor.

write() Write a single string to the file (spaces are not added).
writelines() Write a list of strings to the file (newline characters are not added).

Only strings can be written to files; to write a non-string type, first cast it as a
string with str(). Be mindful of spaces and newlines to separate the data.

>>> with open("out.txt", 'w') as outfile: # Open 'out.txt' for writing.

... for i in xrange(10):

... outfile.write(str(i**2)+' ') # Write some strings (and spaces).

...

>>> outfile.closed # The file is closed automatically.

True

Executing this code replaces whatever used to be in out.txt (whether or not it
existed previously) with the following:

0 1 4 9 16 25 36 49 64 81

Problem 3. Define a class called ContentFilter. Implement the constructor
so that it accepts the name of a file to be read.

1. If the filename argument is not a string, raise a TypeError.

(Hint: The built-in functions type() and isinstance() may be useful.)

2. Read the file and store its name and contents as attributes (store the
contents as a single string). Securely close the file stream.

84 Lab 6. Exceptions and File I/O

String Formatting

Python’s str type class has several useful methods for parsing and formatting
strings. They are particularly useful for processing data from a source file and
for preparing data to be written to an external file.

Method Returns
count() The number of times a given substring occurs within the string.
find() The lowest index where a given substring is found.

isalpha() True if all characters in the string are alphabetic (a, b, c, . . .).
isdigit() True if all characters in the string are digits (0, 1, 2, . . .).
isspace() True if all characters in the string are whitespace (" ", '\t', '\n').

join() The concatenation of the strings in a given iterable with a
specified separator between entries.

lower() A copy of the string converted to lowercase.
upper() A copy of the string converted to uppercase.

replace() A copy of the string with occurrences of a given substring
replaced by a di↵erent specified substring.

split() A list of segments of the string, using a given character or string
as a delimiter.

strip() A copy of the string with leading and trailing whitespace removed.

The join() method translates a list of strings into a single string by concate-
nating the entries of the list and placing the principal string between the entries.
Conversely, split() translates the principal string into a list of substrings, with the
separation determined by the a single input.

str.join() puts the string between the entries of a list.

>>> words = ["state", "of", "the", "art"]

>>> "-".join(words)

'state-of-the-art'

>>> " o_O ".join(words)

'state o_O of o_O the o_O art'

str.split() creates a list out of a string, given a delimiter.

>>> "One fish\nTwo fish\nRed fish\nBlue fish\n".split('\n')
['One fish', 'Two fish', 'Red fish', 'Blue fish', '']

If no delimiter is provided, the string is split by its whitespace characters.

>>> "One fish\nTwo fish\nRed fish\nBlue fish\n".split()

['One', 'fish', 'Two', 'fish', 'Red', 'fish', 'Blue', 'fish']

Can you tell the di↵erence between the following routines?

>>> with open("in.txt", 'r') as myfile:

... contents = myfile.readlines()

...

>>> with open("in.txt", 'r') as myfile:

... contents = myfile.read().split('\n')

85

Problem 4. Add the following methods to the ContentFilter class for writing
the contents of the original file to new files. Each method should accept a
the name of a file to write to and a keyword argument mode that specifies
the file access mode, defaulting to 'w'. If mode is not either 'w' or 'a', raise a
ValueError with an informative message.

1. uniform(): write the data to the outfile with uniform case. Include an
additional keyword argument case that defaults to "upper".

If case="upper", write the data in upper case. If case="lower", write
the data in lower case. If case is not one of these two values, raise a
ValueError.

2. reverse(): write the data to the outfile in reverse order. Include an
additional keyword argument unit that defaults to "line".

If unit="word", reverse the ordering of the words in each line, but write
the lines in the same order as the original file. If unit="line", reverse
the ordering of the lines, but do not change the ordering of the words
on each individual line. If unit is not one of these two values, raise a
ValueError.

3. transpose(): write a “transposed” version of the data to the outfile.
That is, write the first word of each line of the data to the first line
of the new file, the second word of each line of the data to the second
line of the new file, and so on. Viewed as a matrix of words, the rows
of the input file then become the columns of the output file, and vice
versa. You may assume that there are an equal number of words on
each line of the input file.

Also implement the __str__()magic method so that printing a ContentFilter

object yields the following output:

Source file: <filename>

Total characters: <The total number of characters in the file>

Alphabetic characters: <The number of letters>

Numerical characters: <The number of digits>

Whitespace characters: <The number of spaces, tabs, and newlines>

Number of lines: <The number of lines>

86 Lab 6. Exceptions and File I/O

Additional Material

Custom Exception Classes

Custom exceptions can be defined by writing a class that inherits from some existing
exception class. The generic Exception class is typically the parent class of choice.

>>> class TooHardError(Exception):

... pass

...

>>> raise TooHardError("This lab is impossible!")

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

__main__.TooHardError: This lab is impossible!

This may seem like a trivial extension of the Exception class, but it is useful to do
because the interpreter never automatically raises a TooHardError. Any TooHardError

must have originated from a hand-written raise command, making it easier to
identify the exact source of the problem.

Assertions

An AssertionError is a special exception that is used primarily for software testing.
The assert statement is a shortcut for testing the truthfulness of an expression and
raising an AssertionError.

>>> assert <expression>, <message>

Equivalently...

>>> if not <expression>:

... raise AssertionError(<message>)

...

The CSV Module

The CSV format (comma separated value) is a common file format for spreadsheets
and grid-like data. The csv module in the standard library contains functions that
work in conjunction with the built-in file object to read from or write to CSV files.
See https://docs.python.org/2/library/csv.html for details.

https://docs.python.org/2/library/csv.html

87

More String Formatting

Concatenating string values with non-string values is often cumbersome and tedious.
Consider the problem of printing a simple date:

>>> day, month, year = 14, "March", 2015

>>> print("Is today " + str(day) + str(month) + ", " + str(year) + "?")

Is today 14 March, 2015?

The str class’s format() method makes it easier to insert non-string values into
the middle of a string. Write the desired output in its entirety, replacing non-string
values with curly braces {}. Then use the format() method, entering each replaced
value in order.

>>> print("Is today {} {}, {}?".format(day, month, year))

Is today 14 March, 2015?

This method is extremely flexible and provides many convenient ways to format
string output nicely. Suppose, for example, that we would like to visualize the
progress that a program is making through a loop. The following code prints out a
simple status bar.

>>> from sys import stdout

>>> iters = int(1e7)

>>> chunk = iters // 20

>>> for i in xrange(iters):

... print("\r[{:<20}] i = {}".format('='*((i//chunk)+1), i)),

... stdout.flush()

...

Here the string "\r[{:<20}]" used in conjunction with the format() method tells
the cursor to go back to the beginning of the line, print an opening bracket, then
print the first argument of format() left-aligned with at least 20 total spaces before
printing the closing bracket. The comma after the print command suppresses the
automatic newline character, keeping the output of each individual print statement
on the same line. Finally, sys.stdout.flush() flushes the internal bu↵er so that the
status bar is printed in real time.

Of course, printing at each iteration dramatically slows down the progression
through the loop. How does the following code solve that problem?

>>> for i in xrange(iters):

... if not i % chunk:

... print "\r[{:<20}] i = {}".format('='*((i//chunk)+1), i),

... stdout.flush()

...

See https://docs.python.org/2/library/string.html#format-string-syntax
for more examples and specific syntax for using str.format().

https://docs.python.org/2/library/string.html#format-string-syntax

