
Lab 6

Data Structures III: K-D
Trees

Lab Objective: Nearest neighbor search is an optimization problem that arises in
applications such as computer vision, pattern recognition, internet marketing, and
data compression. In this lab we solve the problem e�ciently using a k-d tree, then
use SciPy’s k-d tree to implement a handwriting recognition algorithm.

The Nearest Neighbor Search Problem

Suppose you move into a new city with several post o�ces. Since your time is
valuable, you wish to know which post o�ce is closest to your home. This is called
the nearest neighbor search problem, and it has many applications.

In general, suppose that X is a collection of data, called a training set. Let y
be any point (often called the target point) in the same space as the data in X.
The nearest neighbor search problem determines the point in X that is closest to
y. For example, in the post o�ce problem the set X could be addresses or latitude
and longtitude data for each post o�ce in the city. Then y would be the data that
represents your new home, and the task is to find the closest post o�ce in X to y.

Problem 1. Roughly speaking, a function that measures distance between
two points in a set is called a metric.a The euclidean metric measures the
distance between two points in Rn with the familiar distance formula:

d(x,y) =

v

u

u

t

n

X

i=1

(x
i

� y
i

)2 = kx� yk
2

Write a function that accepts two 1-dimensional NumPy arrays and re-
turns the euclidean distance between them. Raise a ValueError if the arrays
don’t have the same number of entries.

67

68 Lab 6. K-D Trees

(Hint: NumPy already has some functions to help do this quickly.)

a
Metrics and metric spaces are examined in detail in Chapter 5 of Volume I.

Consider again the post o�ce example. One way to find out which post o�ce
is closest is to drive from home to each post o�ce, measure the mileage, and then
choose the post o�ce that is the closest. This is called an exhaustive search. More
precisely, we measure the distance of y to each point in X, and choose the point
with the smallest distance. This method is ine↵ecient however, and only feasible
for relatively small training sets.

Problem 2. Write a function that solves the nearest neighbor search prob-
lem by exhaustively checking all of the distances between a given point and
each point in a data set. The function should take in a set of data points
(as an m ⇥ k NumPy array, where each row represents one of the m points
in the data set) and a single target point (as a 1-dimensional NumPy array
with k entries). Return the point in the training set that is closest to the
target point and its distance from the target.

The complexity of this algorithm is O(mk), where k is the number of
dimensions and m is the number of data points.

K-D Trees

A k-d tree is a special kind of binary search tree for high dimensional data (i.e.,
more dimensions than 1). While a binary search tree excludes regions of the number
line from a search until the search point is found, a k-d tree works on regions of Rk.
So long as the data in the tree meets certain dimensionality requirements, similar
e�ciency gains may be made.

Recall that to search for a point in a binary search tree, we start at the root,
and if the point we are searching for is less than the root we proceed down the left
branch of the tree. If it is larger, we proceed down the right branch. By doing this,
we exclude a region of the number line (and therefore the subtree in the opposite
direction) from our search. By eliminating this region from consideration, we have
far fewer points to search and the e�ciency of our search is greatly increased.

Like a binary search tree, a k-d tree starts with a root node with a depth, or
level, of 0. At the ith level, the nodes to the left of a parent have a lower value in the
ith dimension. Nodes to the right have a greater value in the ith dimension. At the
next level, we do the same for the next dimension. For example, consider data in R3.
The root node partitions the data according to the first dimension. The children of
the root partition according to the second dimension, and the grandchildren along
the third. See Figure 6.1 for an example in R2.

As with any other data structure, the first task is to construct a node class to
store data. A KDTNode is similar to a BSTNode, except it has another attribute called
axis. The axis attribute tells us which dimension of Rk to split on.

https://en.wikipedia.org/wiki/K-d_tree

69

Figure 6.1: A regular binary search tree partitions R, but a k-d tree partitions Rk.
The above graph illustrates the partition for a k-d tree loaded with the points (5,
5), (8, 4), (3, 2), (7, 7), (2, 6), and (9, 2), in that order. To find the point (9, 2), we
start at the root. Since the x-coordinate of (9, 2) is greater than the x-coordinate of
(5, 5), we move into the region to the right of the middle blue line, thus excluding
all points (x, y) with x < 5. Next we compare (9, 2) to the root’s right child, (8,
4). Since the y-coordinate of (9, 2) is less than the y-coordinate of (8, 4), we move
below the red line on the right, thus excluding all points (x, y) with y > 4. We
have now found (9, 2), since it is the left child of (8, 4).

Problem 3. Copy the BSTNode class from the previous lab.Write a KDTNode

class that inherits from BSTNode.

Modify the constructor so that a KDTNode can only hold a NumPy array
(of type np.ndarray). If any other data type is given, raise a TypeError. Also
create an axis attribute (set it to None or 0 for now).

The major di↵erence between a k-d tree and a binary search tree is how the data
is compared at each depth level. Though we don’t need to use a find() method in
solving the nearest neighbor problem, we provide the k-d tree version of find() as
an instructive example.

In the find() method, every comparison in the recursive _step() function com-
pares the data of target and current based on the axis attribute of current. This way

70 Lab 6. K-D Trees

if each existing node in the tree has the correct axis, the correct comparisons are
made as we descend through the tree.

Copy or import the BST class from the previous lab.

class KDT(BST):

"""A k-dimensional binary search tree object.

Used to solve the nearest neighbor problem efficiently.

Attributes:

root (KDTNode): the root node of the tree. Like all other

nodes in the tree, the root houses data as a NumPy array.

k (int): the dimension of the tree (the 'k' of the k-d tree).

"""

def find(self, data):

"""Return the node containing 'data'. If there is no such node

in the tree, or if the tree is empty, raise a ValueError.

"""

Define a recursive function to traverse the tree.

def _step(current):

"""Recursively step through the tree until the node containing

'data' is found. If there is no such node, raise a Value Error.

"""

if current is None: # Base case 1: dead end.

raise ValueError(str(data) + " is not in the tree")

elif np.allclose(data, current.value):

return current # Base case 2: data found!

elif data[current.axis] < current.value[current.axis]:

return _step(current.left) # Recursively search left.

else:

return _step(current.right) # Recursively search right.

Start the recursion on the root of the tree.

return _step(self.root)

Problem 4. Finish implementing the KDT class.

1. Override the insert() method. To insert a new node, find the node
that should be the parent of the new node by recursively descending
through the tree as in the find() method (see figure 6.2 for a geometric
example). Note that the k attribute of the will have to be set at some
point.

The axis attribute of the new node will be one more than that axis of
the parent node. If the last dimension of the data has been reached,
start axis over at 0.

2. To solve the nearest neighbor search problem, we need only create the
k-d tree once. Then we can use it multiple times with di↵erent target
points. To prevent the user from altering the tree, disable the remove()

method. Raise a NotImplementedError if the method is called, and allow

71

it to receive any number of arguments.

Figure 6.2: To insert the point (4, 7) into the k-d tree of figure 6.1, we find the node
that will be the new node’s parent. Start at the root, (5, 5). Since the x-coordinate
of (4, 7) is less than the x-coordinate of (5, 5), we move into the region to the left
of the middle blue line, to the root’s left child, (3, 2). The y-coordinate of (4, 7) is
greater than the y-coordinate of (3, 2), so we move above the red line on the left,
to the right child (2, 6). Now we return to comparing the x-coordinates, and since
4 > 2 and (2, 6) has no right child, we install (4, 7) as the right child of (2, 6).

Using a k-d tree to solve the nearest neighbor search problem requires some
care. At first glance, it appears that a procedure similar to find() or insert() will
immediately yield the result. However, this is not always the case (see Figure 6.3).

To correctly find the nearest neighbor we will keep track of the target point,
the current search node, current best point, and current minimum distance. Start
at the root node. Then the current search node and current best point will be
root, and the current minimum distance will be the euclidean distance from root

to target. We then proceed recursively as in the find() method. As we find better
points (nearer neighbors), we update the appropriate variables accordingly.

Once we have reached the bottom of the tree, we will have a good guess for the
nearest neighbor. However, we are not guaranteed to have arrived at the correct
point. One way to ensure that we have arrived at the correct point is to draw a
hypersphere with a radius of the current minimum distance around the candidate

72 Lab 6. K-D Trees

nearest neighbor. If this hypersphere does not intersect any of the hyperplanes that
split the k-d tree, then we know that have found a best point.

Figure 6.3: Suppose we want to find the point in the k-d tree of figure 6.2 that
is closest to (8, 4.5). First we record the distance from the root to the target as
the current minimum distance (about 3.04), then travel down the tree to the right.
The right child, (8, 4), is only .5 units away from the target (the green circle), so
we update the minimum distance. Since (8, 4) is not a leaf in the tree, we could
continue down to the left child, (7, 7). However, this leaf node is much further from
the target (the purple circle). To ensure that we terminate the algorithm correctly
we check to see if the hypersphere of radius .5 around the current node (the green
circle) intersects with any other hyperplanes. Since it does not, we stop descending
down the tree and conclude (correctly) that (8, 4) is the nearest neighbor.

While we can not easily draw the correct hypersphere, there is an equivalent
procedure that has a straightforward implementation in Python. Before we finally
decide to descend in one direction, we add the minimum distance to the ith entry of
the target point’s data, where i is the axis of the candidate nearest neighbor. If this
sum is greater that the ith entry of the current search node, then the hypersphere
would necessarily intersect one of the hyperplanes drawn by the tree (why?).

73

We summarize the algorithm below.

Algorithm 6.1 k-d tree nearest neighbor search

1: Given a set of data and a target, build a k-d tree out of the data set.
2: procedure Search(current, neighbor, dist)
3: if current is None then . Base case.
4: return neighbor, dist

5: index current.axis

6: if metric(current, target) < dist then

7: neighbor current . Update the best estimate.
8: dist metric(current, target)

9: if target[index] < current.value[index] then . Recurse left.
10: neighbor, dist Search(current.left, neighbor, dist)
11: if target[index] + dist � current.value[index] then

12: neighbor, dist Search(current.right, neighbor, dist)

13: else . Recurse right.
14: neighbor, dist Search(current.right, neighbor, dist)
15: if target[index] - dist  current.value[index] then

16: neighbor, dist Search(current.left, neighbor, dist)

17: return neighbor, dist

18: Start Search() at the root of the tree.

Problem 5. Use Algorithm 6.1 to write a function that solves the nearest
neighbor search problem by searching through a k-d tree (your KDT object).
The function should take in a data set and a single target point. Return the
nearest neighbor in the data set and the distance from the nearest neighbor
to the target point, as in Problem 2 (be sure to return a NumPy array, not
a KDTNode for the neighbor).

To test your function, use Scipy’s built-in KDTree object. This structure
behaves like the KDT class, but its operations are heavily optimized. To solve
the nearest neighbor problem, initialize the tree with data, then ‘query’ the
tree with the target point. The query method returns a tuple of the minimun
distance and the index of the nearest neighbor in the data.

>>> from scipy.spatial import KDTree

Initialize the tree with data (in this example we use random data).

>>> data = np.random.random((100,5))

>>> target = np.random.random(5)

>>> tree = KDTree(data)

Query the tree and print the minimum distance.

>>> min_distance, index = tree.query(target)

>>> print(min_distance)

0.309671532426

Print the nearest neighbor by indexing into the tree's data.

74 Lab 6. K-D Trees

>>> print(tree.data[index])

[0.68001084 0.02021068 0.70421171 0.57488834 0.50492779]

Handwriting Recognition

Classification

Suppose that we are given a training set of data as well as a set of labels that describe
each datum in the training set. For example, suppose that we had a training set
containing the incomes and debt levels of N individuals. Along with this data, we
have a set N labels that state whether the individual has filed for bankruptcy. The
classification problem is to try and assign the correct label to an unlabelled data
point.

k-Nearest Neighbors

In our previous work, we used a k-d tree to find the nearest neighbor of a target
point. A more general problem is to find the k nearest neighbors to a point (using
some metric to measure “distance” between data points). In classification, we find
the k nearest neighbors, we let each neighbor “vote” to decide what label to give
the new point. For example, consider the bankrupty case in the previous section. If
we find the 10 nearest neighbors to a new individual, and 8 of them went bankrupt,
then we would predict that the individual will also go bankrupt. On the other hand,
if 7 of the nearest neighbors had not filed for bankruptcy, we would predict that
the individual was at low risk for bankruptcy.

The Handwriting Recognition Problem

The problem of recognizing handwritten letters and numbers with a computer has
many applications. A computer image may be thought of a vector in Rn, where n
is the number of pixels in the image and the entries represent how bright each pixel
is. If two people write the same number, we would expect the vectors representing
a scanned image of those number to be close in the euclidean metric. This insight
means that given a training set of scanned images along with correct labels, we may
confidently infer the label of a new scanned image.

sklearn

The sklearnmodule contains powerful tools for solving the nearest neighbor problem.
To start nearest neighbors classification, we import the neighbors module from
sklearn. This module has a class for setting up a k-nearest neighbors classifier.

Import the neighbors module

>>> from sklearn import neighbors

Create an instance of a k-nearest neighbors classifier.

75

'n_neighbors' determines how many neighbors to give votes to.

'weights' may be 'uniform' or 'distance.' The 'distance' option

gives nearer neighbors more weight.

'p=2' instructs the class to use the euclidean metric.

>>> nbrs = neighbors.KNeighborsClassifier(n_neighbors=8, weights='distance', p=2)

The nbrs object has two useful methods for classification. The first, fit, will
take arrays of data (the training set) and labels and put them into a k-d tree.
This can then be used to find k-nearest neighbors, much like the KDT class that we
implemented previously.

'points' is some NumPy array of data

'labels' is a NumPy array of labels describing the data in points.

>>> nbrs.fit(points, labels)

The second method, predict, will do a k-nearest neighbor search on the k-d tree
and use the result to attach a label to unlabelled points.

'testpoints' is an array of unlabeled points.

Perform the search and calculate the accuracy of the classification.

>>> prediction = nbrs.predict(testpoints)

>>> np.average(prediction/testlabels)

Problem 6. The United States Postal Service has made a collection of la-
beled hand written digits available to the public, provided in PostalData.npz.
We will use this data for k-nearest neighbor classification. This data set may
be loaded by using the following command:

labels, points, testlabels, testpoints = np.load('PostalData.npz').items()

This contains a training set and a test set. The first entry of each array
is a name, so points[1] and labels[1] are the actual points and labels to use.
Each point is an image that is represented by a flattened 28 ⇥ 28 matrix of
pixels. The corresponding label indicates which number was written.

Classify the testpoints with n_neighbors as 1, 4 or 10, and with weights

as 'uniform' or 'distance'. For each trial print a report indicating how your
classifier performs in terms of percentage of correct classifications. Which
combination gives the most correct classifications? (Hint: define an inner
function that takes in n_neighbors and weights as arguments calls the neighbors
functions appropriately)

A similar classification process is used by the United States Postal Service
to automatically determine the zip code to send a letter to.

76 Lab 6. K-D Trees

Figure 6.4: An example of the number 6 taken from the data set

