
Lab 7

Breadth-First Search and
the Kevin Bacon Problem

Lab Objective: Graph theory has many practical applications. A graph may
represent a complex system or network, and analyzing the graph often reveals critical
information about the network. In this lab we learn to store graphs as adjacency
dictionaries, implement a breadth-first search to identify the shortest path between
two nodes, then use the NetworkX package to solve the so-called “Kevin Bacon
problem.”

Graphs in Python

Computers can represent mathematical graphs using various kinds of data struc-
tures. In previous labs, we stored graphs as trees and linked lists. For non-tree
graphs, perhaps the most common data structure is an adjacency matrix, where
each row of the matrix corresponds to a node in the graph and the entries of the
row indicate which other nodes the current node is connected to. For more on
adjacency matrices, see chapter 2 of the Volume II text.

Another comon graph data structure is an adjacency dictionary, a Python dic-
tionary with a key for each node in the graph. The dictionary values are lists
containing the nodes that are connected to the key. For example, the following is
an adjacency dictionary for the graph in Figure 7.1:

Python dictionaries are used to store adjacency dictionaries.

>>> adjacency_dictionary = {'A':['B', 'C', 'D', 'E'], 'B':['A', 'C'],
'C':['B', 'A', 'D'], 'D':['A', 'C'], 'E':['A']}

The nodes are stored as the dictionary keys.

>>> print(adjacency_dictionary.keys())

['A', 'C', 'B', 'E', 'D']

The values are the nodes that the key is connected to.

>>> print(adjacency_dictionary[A])

>>> ['B', 'C', 'D', 'E'] # A in connected to B, C, D, and E.

77

78 Lab 7. Breadth-First Search and the Kevin Bacon Problem

AB

C

D

E

Figure 7.1: A simple graph with five vertices.

Problem 1. Implement the __str__() method in the provided Graph class.
Print each node in the graph in sorted order, followed by a sorted list of the
neighboring nodes separated by semicolons.

(Hint: consider using the join() method for strings.)

>>> my_dictionary = {'A':['C', 'B'], 'C':['A'], 'B':['A']}
>>> graph = Graph(my_dictionary)

>>> print(graph)

A: B; C

B: A

C: A

Breadth-First Search

Many graph theory problems are solved by finding the shortest path between two
nodes in the graph. To find the shortest path, we need a way to strategically search
the graph. Two of the most common searches are depth-first search (DFS) and
breadth-first search (BFS). In this lab, we focus on BFS. For details on DFS, see
the chapter 2 of the Volume II text.

A BFS traverses a graph as follows: begin at a starting node. If the starting
node is not the target node, explore each of the starting node’s neighbors. If none of
the neighbors are the target, explore the neighbors of the starting node’s neighbors.
If none of those neighbors are the target, explore each of their neighbors. Continue
the process until the target is found.

As an example, we will do a programmatic BFS on the graph in Figure 7.1 one
step at a time. Suppose that we start at node C and we are searching for node E.

Start at node C

>>> start = 'C'
>>> current = start

The current node is not the target, so check its neighbors

>>> adjacency_dictionary[current]

['B', 'A', 'D']

79

None of these are E, so go to the first neighbor, B

>>> current = adjacency_dictionary[start][0]

>>> adjacency_dictionary[current]

['A', 'C']

None of these are E either, so move to the next neighbor

of the starting node, which is A

>>> current = adjacency_dictionary[start][1]

>>> adjacency_dictionary[current]

['B', 'C', 'D', 'E']

The last entry of this list is our target node, and the search terminates.

You may have noticed that some problems in the previous approach that would
arise in a more complicated graph. For example, what prevents us from entering
a cycle? How can we algorithmically determine which nodes to visit as we explore
deeper into the graph?

Implementing Breadth-First Search

We solve these problems using a queue. Recall that a queue is a type of limited-
access list. Data is inserted to the back of the queue, but removed from the front.
Refer to the end of the Data Structures I lab for more details.

A queue is helpful in a BFS to keep track of the order in which we will visit the
nodes. At each level of the search, we add the neighbors of the current node to the
queue. The collections module in the Python standard library has a deque object
that we will use as our queue.

Import the deque object and start at node C

>>> from collections import deque

>>> current = 'C'

The current node is not the target, so add its neighbors to the queue.

>>> visit_queue = deque()

>>> for neighbor in adjacency_dictionary[current]:

... visit_queue.append(neighbor)

...

>>> print(visit_queue)

deque(['B', 'A', 'D'])

Move to the next node by removing from the front of the queue.

>>> current = visit_queue.popleft()

>>> print(current)

B

>>> print(visit_queue)

deque(['A', 'D'])

This isn't the node we're looking for, but we may want to explore its

neighbors later. They should be explored after the other neighbors

of the first node, so add them to the end of the queue.

>>> for neighbor in adjacency_dictionary[current]:

... visit_queue.append(neighbor)

...

>>> print(visit_queue)

deque(['A', 'D', 'A', 'C'])

80 Lab 7. Breadth-First Search and the Kevin Bacon Problem

We have arrived at a new problem. The nodes A and C were added to the queue
to be visited, even though C has already been visited and A is next in line. We
can prevent these nodes from being added to the queue again by creating a set of
nodes to contain all nodes that have already been visited, or that are marked to be
visited. Checking set membership is very fast, so this additional data strutcure has
minimal impact on the program’s speed (and is faster than checking the deque).

In addition, we keep a list of the nodes that have actually been visited to track
the order of the search. By checking the set at each step of the algorithm, the
previous problems are avoided.

>>> current = 'C'
>>> marked = set()

>>> visited = list()

>>> visit_queue = deque()

Visit the start node C.

>>> visited.append(current)

>>> marked.add(current)

Add the neighbors of C to the queue.

>>> for neighbor in adjacency_dictionary[current]:

... visit_queue.append(neighbor)

... # Since each neighbor will be visited, add them to marked as well.

... marked.add(neighbor)

...

Move to the next node by removing from the front of the queue.

>>> current = visit_queue.popleft()

>>> print(current)

B

>>> print(visit_queue)

['A', 'D']

Visit B. Since it isn't the target, add B's neighbors to the queue.

>>> visited.append(current)

>>> for neighbor in adjacency_dictionary[current]:

... visit_queue.append(neighbor)

... marked.add(neighbor)

...

Since C is visited and A is in marked, the queue is unchanged.

>>> print(visit_queue)

deque(['A', 'D'])

Problem 2. Implement the traverse() method in the Graph class using a
BFS. Start from a specified node and proceed until all nodes in the graph
have been visited. Return the list of visited nodes. If the starting node is
not in the adjacency dictionary, raise a ValueError.

81

Shortest Path

In a BFS, as few neighborhoods are explored as possible before finding the target.
Therefore, the path taken to get to the target must be the shortest path.

Examine again the graph in Figure 7.1. The shortest path from C to E is
start at C, go to A, and end at E. During a BFS, A is visited because it is one
of C’s neighbors, and E is visited because it is one of A’s neighbors. If we knew
programmatically that A was the node that visited E, and that C was the node
that visited A, we could retrace our steps to reconstruct the search path.

To implement this idea, initialize a new dictionary before starting the BFS.
When a node is added to the visit queue, add a key-value pair to the dictionary
where the key is the node that is visited and the value is the node that is visiting
it. When the target node is found, step back through the dictionary until arriving
at the starting node, recording each step.

Problem 3. Implement the shortest_path() method in the Graph class using
a BFS. Begin at a specified starting node and proceed until a specified target
is found. Return a list containing the node values in the shortest path from
the start to the target (including the endpoints). If either of the inputs are
not in the adjacency graph, raise a ValueError.

Network X

NetworkX is a Python package for creating, manipulating, and exploring large
graphs. It contains a graph object constructor as well as methods for adding nodes
and edges to the graph. It also has methods for recovering information about the
graph and its structure.

Create a new graph object using networkX

>>> import networkx as nx

>>> nx_graph = nx.Graph()

There are several ways to add nodes and edges to the graph.

One is to use the add_edge method, which creates new edge

and node objects as needed, ignoring duplicates

>>> nx_graph.add_edge('A', 'B')
>>> nx_graph.add_edge('A', 'C')
>>> nx_graph.add_edge('A', 'D')
>>> nx_graph.add_edge('A', 'E')
>>> nx_graph.add_edge('B', 'C')
>>> nx_graph.add_edge('C', 'D')
Nodes and edges are easy to access

>>> print(nx_graph.nodes())

['A', 'C', 'B', 'E', 'D']

>>> print(nx_graph.edges())

[('A', 'C'), ('A', 'B'), ('A', 'E'), ('A', 'D'), ('C', 'B'), ('C', 'D')]

NetworkX also has its own shortest_path method, implemented

with a bidirectional BFS (starting from both ends)

82 Lab 7. Breadth-First Search and the Kevin Bacon Problem

>>> nx.shortest_path(nx_graph, 'C', 'E')
['C', 'A', 'E']

With small graphs, we can visualize the graph with nx.draw()

>>> from matplotlib import pyplot as plt

>>> nx.draw(nx_graph)

>>> plt.show()

Problem 4. Write a function that accepts an adjacency dictionary. Create
a networkx object, load it with the graph information from the dictionary,
and return it.

The Kevin Bacon Problem

“The 6 Degrees of Kevin Bacon” is a well-known parlor game. The game is played
by naming an actor, then trying to find a chain of actors that have worked with
each other leading to Kevin Bacon. For example, Samuel L. Jackson was in the film
Captain America: The First Avenger with Peter Stark, who was in X-Men: First
Class with Kevin Bacon. Thus Samuel L. Jackson has a “Bacon number” of 2. Any
actors who have been in a movie with Kevin Bacon have a Bacon number of 1.

Problem 5. Write a BaconSolver class to solve the Kevin Bacon problem.

The file movieData.txt contains data from about 13,000 movies released
over the course of several years. A single movie is listed on each line, followed
by a sequence of actors that starred in it. The movie title and actors’ names
are separated by a ‘/’ character. The actors are listed by last name first,
followed by their first name.

The provided parse() function generates an adjacency dictionary from
a specified file. In particular, parse("movieData.txt") generates a dictionary
where each key is a movie title and each value is a list of the actors that
appeared in the movie.

Implement the constructor of BaconSolver. Accept a filename to pull data
from and get the dictionary generated by calling parse() with the filename.
Store the collection of values in the dictionary (the actors) as a class attribute,
avoiding duplicates. Convert the dictionary to a NetworkX graph and store
it as another class attribute.

Finally, use NetworkX to implement the path_to_bacon() method. Accept
start and target values (actors’ names) and return a list with the shortest
path from the start to the target. Set Kevin Bacon as the default target. If
either of the inputs are not contained in the stored collection of dictionary
values (if either input is not an actor’s name), raise a ValueError.

>>> movie_graph = BaconSolver("movieData.txt")

>>> movie_graph.path_to_bacon("Jackson, Samuel L.")

http://oracleofbacon.org/help.php

83

['Jackson, Samuel L.', 'Captain America: The First Avenger', 'Stark,
Peter', 'X-Men: First Class', 'Bacon, Kevin']

Achtung!

Because of the size of the dataset, do not attempt to visualize the
graph with nx.draw(). The visualization tool in NetworkX is only e↵ec-
tive on relatively small graphs. In fact, graph visualization in general
remains a challenging and ongoing area of research.

Problem 6. Implement the bacon_number() method in the BaconSolver class.
Accept start and target values and return the number of actors in the shortest
path from start to target. Note that this is di↵erent than the number of
entries in the shortest path list, since movies do not contribute to an actor’s
Bacon number.

Also implement the average_bacon() method. Compute the average Bacon
number across all of the actors in the stored collection of actors. Exclude any
actors that are not connected to Kevin Bacon (their theoretical Bacon num-
ber would be infinity). Return the average Bacon number and the number
of actors not connected at all to Kevin Bacon.

As an aside, the prolific Paul Erdős is considered the Kevin Bacon of the math-
ematical community. Someone with an “Erdős number” of 2 co-authored a paper
with someone who co-authored a paper with Paul Erdős.

https://en.wikipedia.org/wiki/Erd%C5%91s_number
https://xkcd.com/599/
https://xkcd.com/599/

84 Lab 7. Breadth-First Search and the Kevin Bacon Problem

Additional Material

Depth-First Search

A depth-first search (DFS) takes the opposite approach of a breadth-first search.
Instead of checking all neighbors of a single node before moving, on, it checks the
first neighbor, then their first neighbor, then their first neighbor, and so on until
reaching a leaf node. Then the algorithm back tracks to the previous node and
checks its second neighbor. A DFS is sometimes more useful than a BFS, but a
BFS is usually better1 at finding the shortest path.

Consider adding a keyword argument to the traverse() method of the Graph class
that specifies whether to use a BFS (the default) or a DFS. This can be done by
changing a single line of the BFS code.

Improvements to the BaconSolver Class

Consider adding a plot_bacon() method in the BaconSolver class that produces a
simple histogram displaying the frequency of the Bacon numbers in the data set.

1https://xkcd.com/761/

https://xkcd.com/761/

