
Lab 8

Markov Chains

Lab Objective: A Markov chain is a collection of states with specified probabil-

ities for transitioning from one state to another. They are characterized by the fact

that the future behavior of the system depends only on its current state.

Markov chains have far ranging applications. In this lab, we learn to construct,

analyze, and interact with Markov chains and apply a Markov chain to a natural

language processing problem.

State Space Models

Many systems can be described by a finite number of states. For example, a board
game where players move around the board based on die rolls can be modeled by a
Markov chain. Each space represents a state, and a player is said to be in a state
if their piece is currently on the corresponding space. In this case, the probability
of moving from one space to another only depends on the player’s current location;
where the player was on a previous turn does not a↵ect their current turn.

Finite Markov chains have an associated transition matrix that stores the infor-
mation about the transitions between the states in the chain. The (i, j)th entry of
the matrix gives the probability of moving from state j to state i. Thus each of the
columns of the transition matrix must sum to 1.

Note

A transition matrix where the columns sum to 1 is called column stochastic (or
left stochastic). The rows of a row stochastic (or right stochastic) transition
matrix each sum to 1 and the (i, j)th entry of the matrix is the probability of
moving from state i to state j. Both representations are common, but in this
lab we exclusively use column stochastic transition matrices for consistency.

Consider a very simple weather model where the probability of being hot or cold
depends on the weather of the previous day. If the probability that tomorrow is hot
given that today is hot is 0.7, and the probability that tomorrow is cold given that
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82 Lab 8. Markov Chains

today is cold is 0.4, then by assigning hot to the 0th row and column, and cold to
the 1st row and column, this Markov chain has the following transition matrix:

hot today cold today �
hot tomorrow 0.7 0.6
cold tomorrow 0.3 0.4

If it is hot today, we examine the 0th column of the matrix. There is a 70%
chance that tomorrow will be hot (0th row) and a 30% chance that tomorrow will be
cold (1st row). Conversely, if it is cold today, there is a 60% chance that tomorrow
will be hot and a 40% chance that tomorrow will be cold.

Markov chains can be represented by a state diagram, a type of directed graph.
The nodes in the graph are the states, and the edges indicate the state transition
probabilities. The Markov chain described above has the following state diagram.

Hot Cold.7

.3

.4

.6

Problem 1. Transition matrices for Markov chains are e�ciently stored as
NumPy arrays. Write a function that accepts an integer n and returns the
transition matrix for a random Markov chain with n states.
(Hint: use array broadcasting to avoid looping.)

Simulating State Transitions

A single draw from a binomial distribution with parameters n and p indicates the
number of successes out of n independent experiments, each with probability p of
success. The classic example is a series of coin flips, where p is the probability
that the coin lands heads side up. NumPy’s random module has an e�cient tool,
binomial(), for drawing from a binomial distribution.

>>> import numpy as np

# Draw from the binomial distribution with n = 1 and p = .5 (flip 1 coin).

>>> np.random.binomial(1, .5)

0 # The coin flip resulted in tails.

Consider again the simple weather model and suppose that today is hot. The
column that corresponds to “hot”in the transition matrix is [0.7, 0.3]. To determine
whether tomorrow is hot or cold, draw from the binomial distribution with n = 1
and p = 0.3. If the draw is 1, which has 30% likelihood, then tomorrow is cold.
If the draw is 0, which has 70% likelihood, then tomorrow is hot. The following
function implements this idea.
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def forecast():

"""Forecast tomorrow's weather given that today is hot."""

transition = np.array([[0.7, 0.6], [0.3, 0.4]])

# Sample from a binomial distribution to choose a new state.

return np.binomial(1, transition[1, 0])

Problem 2. Modify forecast() so that it accepts an integer parameter days

and runs a simulation of the weather for the number of days given. Return
a list containing the day-by-day weather predictions (0 for hot, 1 for cold).
Assume the first day is hot, but do not include the data from the first day in
the list of predictions. The resulting list should therefore have days entries.

Larger Chains

The forecast() function makes one random draw from a binomial distribution to
simulate a state change. Larger Markov chains require draws from a multinomial

distribution, a multivariate generalization of the binomial distribution. A draw from
a multinomial distribution parameters n and (p1, p2, . . . , p

k

) indicates which of
k outcomes occurs in n di↵erent experiments. In this case the classic example is a
series of dice rolls, with 6 possible outcomes of equal probability.

>>> die_probabilities = np.array([1./6, 1./6, 1./6, 1./6, 1./6, 1./6])

# Draw from the multinomial distribution with n = 1 (roll a single die).

>>> np.random.multinomial(1, die_probabilities)

array([0, 0, 0, 1, 0, 0]) # The roll resulted in a 4.

Problem 3. Let the following matrix be the transition matrix for a Markov
chain modeling weather with four states: hot, mild, cold, and freezing.

hot mild cold freezing
2
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hot 0.5 0.3 0.1 0
mild 0.3 0.3 0.3 0.3
cold 0.2 0.3 0.4 0.5

freezing 0 0.1 0.2 0.2

Write a new function that accepts an integer parameter and runs the same
kind of simulation as forecast(), but that uses this new four-state transition
matrix. This time, assume that the first day is mild. Return a list containing
the day-to-day results (0 for hot, 1 for mild, 2 for cold, and 3 for freezing).
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General State Distributions

For a Markov chain with n states, the probability of being in each of the states can
be encoded by a single n⇥1 vector x, called a state distribution vector. The entries of
x must be nonnegative and sum to 1. Then the ith entry x

i

of x is the probability
of being in state i. For example, the state distribution vector x = [0.8, 0.2]T

corresponding to the 2-state weather model of Problem 2 indicates that there is a
80% chance that today is hot and a 20% chance that today is cold. On the other
hand, the vector x = [0, 1]T implies that today is, with 100% certainty, cold.

If A is an n⇥n transition matrix for a Markov chain and x is a state distribution
vector, then Ax is also a state distribution vector. In fact, if x(k) is the state
distribution vector corresponding to a certain time k, then x(k+1) = Ax(k) contains
the probabilities of being in each state after allowing the system to transition again.
For the weather model, this means that if there is an 80% chance that it will be hot
5 days from now, written x(5) = [0.8, 0.2]T, then since

x(6) = Ax(5) =


0.7 0.6
0.3 0.4

� 
0.8
0.2

�
=


0.68
0.32

�
,

there is a 68% chance that 6 days from now will be a hot day.

Convergent Transition Matrices

Given an initial state distribution vector x(0), defining x(k+1) = Ax(k) yields the
following significant relation.

x(k) = Ax(k�1) = A(Ax(k�2)) = A(A(Ax(x�3))) = · · · = Akx(0)

This indicates that the (i, j)th entry of Ak is the probability of transition from
state j to state i in k steps. For the transition matrix of the 2-state weather model,
something curious happens to Ak for even small values of k.

A =


0.7 0.6
0.3 0.4

�
A2 =


0.67 0.66
0.33 0.34

�
A3 =


0.667 0.666
0.333 0.334

�

As k ! 1, the entries of Ak converge, written as follows.

lim
k!1

Ak =


2/3 2/3
1/3 1/3

�
. (8.1)

In addition, for any initial state distribution vector x(0) = [a, b]T, a+ b = 1,

lim
k!1

x(k) = lim
k!1

Akx(0) =


2/3 2/3
1/3 1/3

� 
a

b

�
=


2(a+ b)/3
(a+ b)/3

�
=


2/3
1/3

�
.

Thus as k ! 1, x(k) ! x = [2/3, 1/3]T, regardless of the initial state distribu-
tion x(0). So according to this model, no matter the weather today, the probability
that it is hot a week from now is approximately 66.67%. In fact, approximately 2
out of 3 days in the year should be hot.
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Steady State Distributions

The state distribution x = [2/3, 1/3]T has another important property.

Ax =


7/10 3/5
3/10 2/5

� 
2/3
1/3

�
=


14/30 + 3/15
6/30 + 2/15

�
=


2/3
1/3

�
= x.

Any x satisfying Ax = x is called a steady state distribution or a stable fixed

point of A. In other words, a steady state distribution is an eigenvector of A

with corresponding eigenvalue � = 1.

Every Markov chain has at least one steady state distribution. If some power Ak

of A has all positive (nonzero) entries, then the steady state distribution is unique.1

In this case, lim
k!1 Ak is the matrix whose columns are all equal to the unique

steady state distribution, as in (8.1). Under these circumstances, the steady state
distribution x can be found by iteratively calculating x(k+1) = Ax(k), as long as
the initial vector x(0) is a state distribution vector.

Achtung!

Though every Markov chain has at least one steady state distribution, the
procedure described above fails if Ak fails to converge. Consider the following
example.

A =

2

4
0 0 1
0 1 0
1 0 0

3

5 , Ak =

(
A if k is odd

I if k is even

In this case as k ! 1, Ak oscillates between two di↵erent matrices.

Furthermore, the steady state distribution is not always unique; the tran-
sition matrix defined above, for example, has infinitely many.

Problem 4. Write a function that accepts an n⇥ n transition matrix A, a
convergence tolerance ✏, and a maximum number of iterations N . Generate
a random state distribution vector x(0) and calculate x(k+1) = Ax(k) until
kx(k�1) � x(k)k < ✏. If k exceeds N , raise a ValueError to indicate that Ak

does not converge. Return the approximate steady state distribution x of A.

To test your function, use Problem 1 to generate a random transition
matrix A. Verify that Ax = x and that the columns of Ak approach x

as k ! 1. To compute Ak, use NumPy’s (very e�cient) algorithm for
computing matrix powers.

>>> A = np.array([[.7, .6],[.3, .4]])

>>> np.linalg.matrix_power(A, 10) # Compute A^10.

array([[ 0.66666667, 0.66666667],

[ 0.33333333, 0.33333333]])

1
This is a consequence of the Perron-Frobenius theorem, which is presented in conjunction with

spectral calculus in Volume I.
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Finally, use your function to validate the results of Problems 2 and 3:

1. Calculate the steady state distributions corresponding to the transition
matrices for each simulation.

2. Run each simulation for a large number of days and verify that the
results match the steady state distribution (for example, check that
approximately 2/3 of the days are hot for the smaller weather model).

Note

Problem 4 is a special case of the power method, an algorithm for calculating an
eigenvector of a matrix corresponding to the eigenvalue of largest magnitude.
The general version of the power method, together with a discussion of its
convergence conditions, will be discussed in another lab.

Using Markov Chains to Simulate English

One of the original applications of Markov chains was to study natural languages.2

In the early 20th century, Markov used his chains to model how Russian switched
from vowels to consonants. By mid-century, they had been used as an attempt to
model English. It turns out that Markov chains are, by themselves, insu�cient to
model very good English. However, they can approach a fairly good model of bad
English, with sometimes amusing results.

By nature, a Markov chain is only concerned with its current state. Thus a
Markov chain simulating transitions between English words is completely unaware
of context or even of previous words in a sentence. For example, a Markov chain’s
current state may be the word “continuous.” Then the chain would say that the
next word in the sentence is more likely to be “function” rather than “raccoon.”
However, without the context of the rest of the sentence, even two likely words
stringed together may result in gibberish.

We restrict ourselves to a subproblem of modeling the English of a specific file.
The transition probabilities of the resulting Markov chain reflect the sort of English
that the source authors speak. Thus the Markov chain built from The Complete

Works of William Shakespeare di↵ers greatly from, say, the Markov chain built from
a collection of academic journals. We call the source collection of works in the next
problems the training set.

2
The term natural language refers to a spoken language, like English or Russian. See http:

//langvillea.people.cofc.edu/MCapps7.pdf for some details on the early applications of Markov

chains, including the study of natural languages.

http://langvillea.people.cofc.edu/MCapps7.pdf
http://langvillea.people.cofc.edu/MCapps7.pdf
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Making the Chain

With the weather models of the previous sections, we chose a fixed number of days
to simulate. However, English sentences are of varying length, so we do not know
beforehand how many words to choose (how many state transitions to make) before
ending the sentence. To capture this feature, we include two extra states in our
Markov model: a start state ($tart) marking the beginning of a sentence, and a
stop state ($top) marking the end. Thus a training set with N unique words has
an (N + 2)⇥ (N + 2) transition matrix.

The start state only transitions to words that appear at the beginning of a
sentence in the training set, and only words that appear at the end a sentence in
the training set transition to the stop state. The stop state is called an absorbing

state because once we reach it, we cannot transition back to another state.

After determining the states in the Markov chain, we need to determine the
transition probabilities between the states and build the corresponding transition
matrix. Consider the following small training set from Dr. Seuss as an example.

I am Sam Sam I am.

Do you like green eggs and ham?

I do not like them, Sam I am.

I do not like green eggs and ham.

If we include punctuation (so “ham?” and “ham.” are counted as distinct
words) and do not alter the capitalization (so “Do” and “do” are also di↵erent),
there are 15 unique words in this training set:

I am Sam am. Do you like green

eggs and ham? do not them, ham.

With start and stop states, the transition matrix should be 17⇥ 17. Each state
must be assigned a row and column index in the transition matrix. As easy way to
do this is to assign the states an index based on the order that they appear in the
training set. Thus our states and the corresponding indices will be as follows:

$tart I am Sam . . . ham. $top
0 1 2 3 . . . 15 16

The start state should transition to the words “I” and “Do”, and the words
“am.”, “ham?”, and “ham.” should each transition to the stop state. We first
count the number of times that each state transitions to another state:

$tart I am Sam ham. $top2

6666666664

3

7777777775

$tart 0 0 0 0 . . . 0 0
I 3 0 0 2 . . . 0 0
am 0 1 0 0 . . . 0 0
Sam 0 0 1 1 . . . 0 0

...
...

...
...

. . .
...

...
ham. 0 0 0 0 . . . 0 0
$top 0 0 0 0 . . . 1 1
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Now divide each column by its sum so that each column sums to 1.

$tart I am Sam ham. $top2

6666666664

3

7777777775

$tart 0 0 0 0 . . . 0 0
I 3/4 0 0 2/3 . . . 0 0
am 0 1/5 0 0 . . . 0 0
Sam 0 0 1 1/3 . . . 0 0

...
...

...
...

. . .
...

...
ham. 0 0 0 0 . . . 0 0
$top 0 0 0 0 . . . 1 1

The 3/4 indicates that 3 out of 4 times, the sentences in the training set start
with the word “I”. Similarly, the 2/3 and 1/3 tell us that “Sam” is followed by “I”
twice and by “Sam” once in the training set. Note that “am” (without a period)
always transitions to “Sam” and that “ham.” (with a period) always transitions
the stop state. Finally, to avoid a column of zeros, we place a 1 in the bottom right
hand corner of the matrix (so the stop state always transitions to itself).

The entire procedure of creating the transition matrix for the Markov chain with
words from a file as states is summarized below.

Algorithm 8.1 Convert a training set of sentences into a Markov chain.

1: procedure MakeTransitionMatrix

2: Count the number of unique words in the training set.
3: Initialize a square array of zeros of the appropriate size to be the transition

matrix (remember to account for the start and stop states).
4: Initialize a list of states, beginning with "$tart".
5: for each sentence in the training set do
6: Split the sentence into a list of words.
7: Add each new word in the sentence to the list of states.
8: Convert the list of words into a list of indices indicating which row and

column of the transition matrix each word corresponds to.
9: Add 1 to the entry of the transition matrix corresponding to

transitioning from the start state to the first word of the sentence.
10: for each consecutive pair (x, y) of words in the list of words do
11: Add 1 to the entry of the transition matrix corresponding to

transitioning from state x to state y.

12: Add 1 to the entry of the transition matrix corresponding to
transitioning from the last word of the sentence to the stop state.

13: Make sure the stop state transitions to itself.
14: Normalize each column by dividing by the column sums.
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Problem 5. Write a class called SentenceGenerator. The constructor should
accept a filename (the training set). Read the file and build a transition
matrix from its contents as described in Algorithm 8.1.

You may assume that the file has one complete sentence written on each
line, and your implementation may be either column- or row-stochastic.

Problem 6. Add a method to the SentenceGenerator class called babble().
Begin at the start state and use the strategy from Problem 3 to repeatedly
transition through the object’s Markov chain. Keep track of the path through
the chain and the corresponding sequence of words. When the stop state is
reached, stop transitioning to terminate the simulation. Return the resulting
sentence as a single string.

For example, your SentenceGenerator class should be able to create random
sentences that sound somewhat like Yoda speaking.

>>> yoda = SentenceGenerator("yoda.txt")

>>> for _ in xrange(25):

... print(yoda.babble())

...

Impossible to my size, do not!

For eight hundred years old to enter the dark side of Congress there is.

But beware of the Wookiees, I have.

Fear leads to eat as well.

But agree on this, we must, and find your weapon!

Hear you fear of the Force.

A Jedi must go.

Fear is upon me by a fight.

Never his ally in you.

Or I mean you it appears to answer that strong.

Hard to let go of a long time have I have.

Obi-Wan, my choice is.

Luke, when gone am I, the Force be with him.

Told you are, no harm.

Impossible to learn he is.

Inform the Force, but the dark, path as is ready.

Unexpected this move by Darth Vader.

At an end this kind?

A master and decisively we have.

Much anger there are, no more, no less.

What know you Count, this boy's future is.

Heard from the Force.

Will he begins?

So certain, are worse.

Death is time have the dark place we will be when sensing the way of

the Force.
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Additional Material

Large Training Sets

The approach in Problems 5 and 6 begins to fail as the training set grows larger.
For example, a single Shakespearean play may not be large enough to cause memory
problems, but The Complete Works of William Shakespeare certainly will.

To accommodate larger data sets, consider use a sparse matrix from scipy.sparse

for the transition matrix instead of a regular NumPy array. Specifically, construct
the transition matrix as a lil_matrix (which is easy to build incrementally), then
convert it to the csc_matrix format (which supports fast column operations). Ensure
that the process still works on small training sets, then proceed to larger training
sets. How are the resulting sentences di↵erent if a very large training set is used
instead of a small training set?

Variations on the English Model

Choosing a di↵erent state space for the English Markov model produces di↵erent
results. Consider modifying your SentenceGenerator class so that it can determine the
state space in a few di↵erent ways. The following ideas are just a few possibilities.

• Let each punctuation mark have its own state. In the example training set,
instead of having two states for the words “ham?” and “ham.”, there would
be three states: “ham”, “?”, and “.”, with “ham” transitioning to both punc-
tuation states.

• Model paragraphs instead of sentences. Add a $tartParagraph state that al-
ways transitions to $tartSentence and a $topParagraph state that is sometimes
transitioned to from $topSentence.

• Let the states be individual letters instead of individual words. Be sure to
include a state for the spaces between words. We will explore this particular
state space choice more in Volume III together with hidden Markov models.

• Construct the state space so that the next state depends on both the current
and previous states. This kind of Markov chain is called a Markov chain

of order 2. This way, every set of three consecutive words in a randomly
generated sentence should be part of the training set, as opposed to only
every consecutive pair of words coming from the set.

• Instead of generating random sentences from a single source, simulate a ran-
dom conversation between n people. Construct a Markov chain M

i

, for each
person, i = 1, . . . , n, then create a Markov chain C describing the conver-
sation transitions from person to person; in other words, the states of C are
the M

i

. To create the conversation, generate a random sentence from the
first person using M1. Then use C to determine the next speaker, generate a
random sentence using their Markov chain, and so on.
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Natural Language Processing Tools

The Markov model of Problems 5 and 6 is a natural language processing application.
Python’s nltk module (natural language toolkit) has many tools for parsing and
analyzing text for these kinds of problems. For example, nltk.sent_tokenize() reads
a single string and splits it up into sentences.

>>> from nltk import sent_tokenize

>>> with open("yoda.txt", 'r') as yoda:

... sentences = sent_tokenize(yoda.read())

...

>>> print(sentences)

['Away with your weapon!',
'I mean you no harm.',
'I am wondering - why are you here?',
...

The nltk module is not part of the Python standard library. For instructions
on downloading, installing, and using nltk, visit http://www.nltk.org/.

http://www.nltk.org/

