
Lab 9

Fourier I: The Discrete
Fourier Transform

Lab Objective: The analysis of periodic functions has many applications in
pure and applied mathematics, especially in settings dealing with sound waves. The
Fourier transform provides a way to analyze such periodic functions. In this lab,
we implement the discrete Fourier transform and explore digital audio signals.

Sound Waves

Sound is the way that we perceive vibrations in matter. These vibrations travel
in waves. Sound waves have two important characteristics that determine what we
hear, or whether or not we can hear it. Frequency is a measurement of the num-
ber of occurrences in a certain time, and determines the pitch of the sound. Only
certain frequencies are perceptible to the human ear. The second characteristic is
intensity or amplitude, and determines the volume of the sound. Sounds waves cor-
respond physically to continuous functions, but computers can approximate sound
waves using discrete measurements. Indeed, discrete measurements can be made
indistinguishable to the human ear from a truly continuous wave. Usually, sound
waves are of a sinusoidal nature (with some form of decay), and the frequency is
related to the wavelength, and the intensity to the wave amplitude.

Digital Audio Signals

Digital Audio Signals are how computers can approximate sound waves, and have
two key components that relate to the frequency and amplitude of sound waves:
samples, and sampling rate. A sample is a measurement of the amplitude of a
sound wave at a specific instant in time. The sampling rate corresponds to the
sound frequency.

If we know at what rate a set of samples were taken, then we can reconstruct
the wave exactly as it was recorded. If we don’t know the sampling rate, then
our frequencies will be unknown. In most applications, this sample rate will be
measured in the number of samples taken per second, Hertz (Hz). The standard
rate for high quality audio is 44100 equally spaced samples per second, or 44.1 kHz.

93

94 Lab 9. The Discrete Fourier Transform

Problem 1. Write a class called Signal for storing digital audio signals. The
constructor should accept a sample rate (an integer) and an array of samples
(a NumPy array). Store these inputs as attributes.

Write a method called plot() that generates the graph of the sound wave.
Use the sample rate to label the x-axis in terms of seconds. See Figure 9.1
for an example.

Wave File Format

One of the most common audio file formats across operating systems is the wave
format, also called wav after its file extension. It is a lightweight, common standard
that is in wide use. SciPy has built-in tools to read and create wav files. To read
in a wav file, we can use the read() function that returns the file’s sample rate and
samples. See Figure 9.1.

Read from the sound file.

>>> from scipy.io import wavfile

>>> rate, wave = wavfile.read('tada.wav')

To visualize the data, use the Signal class's plot function.

>>> sig = Signal(rate, wave)

>>> sig.plot()

Writing a signal to a file is also simple. We use wavfile.write(), specifing the
name of the new file, the sample rate, and the array of samples.

Write a random signal sampled at a rate of 44100 Hz to my_sound.wav.

>>> wave = sp.random.randint(-32767, 32767, 30000)

>>> samplerate = 44100

>>> wavfile.write('my_sound.wav', samplerate, wave)

Scaling

The wavfile.write() function expects an array of 16 bit integers for the samples
(whole numbers between �32767 and 32767). Therefore, waves may need to be
scaled and converted to integers before being written to a file.

Generate random samples between -0.5 and 0.5.

>>> samples = sp.random.random(30000)-.5

Scale the wave so that the samples are between -32767 and 32767.

>>> samples *= 32767*2

Cast the samples as 16 bit integers.

>>> samples = sp.int16(samples)

The scaling technique in the above example works, but only because we knew
beforehand that the values were in the interval [� 1

2 ,
1
2]. If the entries of a wave are

not scaled properly, the operating system may not know how to play the file.

95

Figure 9.1: The soundwave of tada.wav.

Problem 2. Add a method to the Signal class called export() that accepts
a file name and generates a .wav file from the sample rate and the array
of samples. Scale the array of samples appropriately before writing to the
output file. Ensure that your scaling technique is valid for arbitrary arrays
of samples. Note that some arrays will not need to be scaled.

Creating Sounds in Python

In order to generate a sound in python, we need to sample the corresponding sinu-
soidal wave and then save it as an audio file. For example, suppose that we want
to generate a sound with a frequency of 500 Hertz for 10 seconds.

>>> samplerate = 44100

>>> frequency = 500

>>> length = 10 # Length in seconds of the desired sound.

Recall the the function sin(x) has a period of 2⇡. To create sounds, however,
we want the period of our wave to be 1, corresponding to 1 second. Thus, we will
sample from the function

sin(2⇡xf)

where f is our desired frequency.

96 Lab 9. The Discrete Fourier Transform

The lambda keyword is a shortcut for creating a one-line function.

>>> wave_function = lambda x: sp.sin(2*sp.pi*x*frequency)

In the following code, we generate a signal using three steps: first, we find the
correct step size given the sample rate. Next, we generate the points at which we
wish to sample the wave. Finally, we sample the wave by passing the sample points
to wave_function. Then we can use our Signal class to plot the soundwave or write
it to a file.

Calculate the step size, the sample points, and the sample values.

>>> stepsize = 1./samplerate

>>> sample_points = sp.arange(0, length, stepsize)

>>> samples = wave_function(sample_points)

Use the Signal class to write the sound to a file.

>>> sinewave = Signal(samplerate, samples)

>>> sinewave.export("sine.wav")

The export() method should take care of scaling and casting the entries as 16-bit
integers.

Problem 3. The ‘A’ note occurs at a frequency of 440 Hertz. Generate the
sine wave that corresponds to an ‘A’ note being played for 5 seconds.

Once you have successfully generated the ‘A’ note, experiment with di↵er-
ent frequencies to generate di↵erent notes. The following table shows some
frequencies that correspond to common notes. Octaves of these notes are
obtained by doubling or halving these frequencies.

Note Frequency
A 440
B 493.88
C 523.25
D 587.33
E 659.25
F 698.46
G 783.99
A 880

Implement a function outside of the Signal class that accepts a frequency
and a duration and returns an instance of the Signal class corresponding to
the desired soundwave. Sample at a rate of 44100 samples per second to
create these sounds.

97

Discrete Fourier Transform

Some Technicalities

Under the right conditions, a continuous periodic function may be represented as a
sum of sine waves:

f(x) =
1X

k=�1
c
k

sin kx

where the constants c
k

are called the Fourier coe�cients.

Such a transform also exists for discrete periodic functions. Whereas the fre-
quencies present in the continuous case are multiples of a sine wave with a period
of 1, the discrete case is somewhat di↵erent. The Fourier coe�cients in the dis-
crete case represent the amplitudes of sine waves whose periods are multiples of a
“fundamental frequency.” The fundamental frequency is a sine wave with a period
length equal to the amount of time of the signal.

The kth coe�cient of a signal {x0, .., xN�1} is calculated with the following
formula:

c
k

=
N�1X

n=0

x
n

e
2⇡ikn

N (9.1)

where i is the square root of �1. This process is done for each k from 0 to N � 1.
Thus there are just as many Fourier coe�cients as samples from the orginal signal.

Problem 4. Write a function that accepts a NumPy array and computes
the discrete Fourier transform of the array using Equation 9.1. Return the
array of calculated coe�cients.

SciPy has several methods for calculating the DFT of an array. Use scipy.

fft() or scipy.fftpack.fft() to check your implementation. The naive method
is significantly slower than SciPy’s implementation, so test your function only
on small arrays. When you have your method working, try to optimize it so
that you can calculate each coe�cient c

k

in just one line of code.

Plotting the DFT

The graph of the Fourier transform of a sound file is useful in a variety of applica-
tions. While the graph of the original signal gives information about the amplitude
of a soundwave at certain points, the graph of the discrete Fourier transform shows
which frequencies are present in the signal. Often, this information is of greater
importance than how the wave changes in time. Frequencies present in the signal
have non-zero coe�cients. The magnitude of these coe�cients corresponds to how
influential the frequency is in the signal. For example, the sounds that we generated

98 Lab 9. The Discrete Fourier Transform

Figure 9.2: The magnitude of the coe�cients of the discrete Fourier transform of
an ‘A’ note. Notice that there are two spikes in the graph, the first around 440 on
the x-axis. This second spike is due to symmetries inherent in the DFT. For our
purposes we will mostly be concerned with the left side of the DFT plot.

in the previous section contained only one frequency. If we created an ‘A’ note at
440 Hz, then the graph of the DFT would appear as in Figure 9.2.

On the other hand, the DFT of a more complicated sound wave will have many
frequencies present. Some of these frequencies correspond to the di↵erent tones
present in the signal. See Figure 9.3 for an example.

Fixing the x-axis

If we take the DFT of a signal and then plot it without any other considerations,
the x-axis will correspond to the index of the coe�cients in the DFT and not their
frequencies. In a previous section, we mention that the “fundamental frequency”
for the DFT corresponds to a sine wave whose period is the same as the length of
the signal. Thus, if unchanged, the x-axis gives us the number of times a particular
sine wave cycles throughout the whole signal. If we want to label the x-axis with
the frequencies measured in Hertz, or cycles per second, we will need to convert the

99

Figure 9.3: The discrete Fourier transform of tada.wav. Each spike in the graph
corresponds to a frequency that is present in the signal.

units. Fortunately, the bitrate is measured in samples per second. Therfore, if we
divide the frequency (given by the index) by the number of samples, and multiply
by the sample rate, we end up with cycles per second, or Hertz.

cycles
samples ⇥

samples
second = cycles

second

Calculate the DFT and the x-values that correspond to the coefficients. Then

convert the x-values so that they measure frequencies in Hertz.

>>> dft = sp.fft(signal)

>>> x_vals = sp.arange(1,len(dft)+1, 1)*1. # Make them floats

x_vals now corresponds to frequencies measured in cycles per signal length.

>>> x_vals = x_vals/len(signal)

>>> x_vals = x_vals*rate

Problem 5. Update the plot() method in the Signal class so that it gener-
ates a single plot with two subplots: the original soundwave, and the mag-
nitude of the coe�cients of the DFT (as in Figure 9.3). Use one of SciPy’s

100 Lab 9. The Discrete Fourier Transform

FFT implementations to calculate the DFT.

Problem 6. A chord is a conjunction of several notes played together. We
can create a chord in Python by adding several sound waves together. For
example, to create a (minor) chord with ‘A’, ‘C’, and ‘E’ notes, we gener-
ate the sound waves for each, as in the prior problem, and then add them
together.

Create several chords and observe the plot of their DFT. There should
be as many spikes as there are notes in the plot. Then create a sound that
changes over time.

(Hints: you may consider implementing the __add__() magic method for
the Signal class. NumPy’s np.hstack() and np.vstack() may also be helpful.)

