
Lab 11

Introduction to Wavelets

Lab Objective: In the context of Fourier analysis, one seeks to represent a
function as a sum of sinusoids. A drawback to this approach is that the Fourier
transform only captures global frequency information, and local information is lost;
we can know which frequencies are the most prevalent, but not when or where they
occur. The Wavelet transform provides an alternative approach that avoids this
shortcoming and is often a superior analysis technique for many types of signals
and images.

The Discrete Wavelet Transform

In wavelet analysis, we seek to analyze a function by considering its wavelet de-
composition. The wavelet decomposition of a function is a way of expressing the
function as a linear combination of a particular family of basis functions. In this
way, we can represent a function by the sequence of coe�cients (called wavelet co-
e�cients) defining this linear combination. The mapping from a function to its
sequence of wavelet coe�cients is called the discrete wavelet transform.

This situation is entirely analogous to the discrete Fourier transform. Instead
of using trigonometric functions as our basis, we use a di↵erent family of basis
functions. In Wavelet analysis, we determine the family of basis functions by first
starting o↵ with a function called the wavelet and a function � called the scaling
function (these functions are also called the mother and father wavelets, respec-
tively). We then generate countably many basis functions (sometimes called baby
wavelets) from these two functions:

m,k

(x) = (2mx� k)

�
m,k

(x) = �(2mx� k),

where m, k 2 Z. The historically first, and most basic, wavelet is called the Haar
Wavelet, given by

 (x) =

8
><

>:

1 if 0  x < 1
2

�1 if 1
2  x < 1

0 otherwise.

109

110 Lab 11. Intro to Wavelets

The associated scaling function is given by

�(x) =

(
1 if 0  x < 1

0 otherwise.

In the case of finitely-sampled signals and images, only finitely many wavelet
coe�cients are nonzero. Depending on the application, we are often only interested
in the coe�cients corresponding to a subset of the basis functions. Since a given
family of wavelets forms an orthogonal set, we can compute the wavelet coe�cients
by taking inner products (i.e. by integrating). This direct approach is not particu-
larly e�cient, however. Just as there are fast algorithms for computing the fourier
transform (e.g. the FFT), we can e�ciently calculate wavelet coe�cients using
techniques from signal processing. In particular, we will use an iterative filterbank
to compute the transform.

Let’s launch into an implementation of the one-dimensional discrete wavelet
transform. The key operations in the algorithm are the discrete convolution (⇤)
and down-sampling (DS). The inputs to the algorithm are a one-dimensional array
X (the signal that we want to transform), a one-dimensional array L (called the
low-pass filter), a one-dimensional array H (the high-pass filter), and a positive
integer n (controlling to what degree we wish to transform the signal, i.e. how
many wavelet coe�cients we wish to compute). The low-pass and high-pass filters
can be derived from the wavelet and scaling function. The low-pass filter extracts
low frequency information, which gives us an approximation of the signal. This
approximation highlights the overall (slower-moving) pattern without paying too
much attention to the high frequency details, which to the eye (or ear) may be
unhelpful noise. However, we also need to extract the high-frequency details with
the high-pass filter. While they may sometimes be nothing more than unhelpful
noise, there are applications where they are the most important part of the signal;
for example, details are very important if we are sharpening a blurry image or
increasing contrast.

For the Haar Wavelet, our filters are given by

L =
h

1p
2

1p
2

i

H =
h
� 1p

2
1p
2

i
.

See Algorithm 11.1 and Figure 11.1 for the specifications.

Algorithm 11.1 The one-dimensional discrete wavelet transform.

1: procedure dwt(X,L,H, n)
2: A

i

 X . Some initialization steps
3: for i = 0 . . . n� 1 do

4: D
i+1 DS(A

i

⇤H) . High-pass filtering
5: A

i+1 DS(A
i

⇤ L) . Low-pass filtering

6: return A
n

, D
n

, D
n�1, . . . , D1.

111

A
j

Lo

Hi

A
j+1

D
j+1

Key: = convolve

= downsample

Figure 11.1: The one-dimensional discrete wavelet transform implemented as a filter
bank.

At each stage of the algorithm, we filter the signal into an approximation and
its details. Note that the algorithm returns a sequence of one dimensional arrays

A
n

, D
n

, D
n�1, . . . , D1.

If the input signal X has length 2m for some m � n and we are using the Haar
wavelet, then A

n

has length 2m�n, and D
i

has length 2m�i for i = 1, . . . , n. The
arrays D

i

are outputs of the high-pass filter, and thus represent high-frequency
details. Hence, these arrays are known as details. The array A

n

is computed by
recursively passing the signal through the low-pass filter, and hence it represents
the low-frequency structure in the signal. In fact, A

n

can be seen as a smoothed
approximation of the original signal, and is called the approximation.

As noted earlier, the key mathematical operations are convolution and down-
sampling. To accomplish the convolution, we simply use a function in SciPy.

>>> import numpy as np

>>> from scipy.signal import fftconvolve

>>> # initialize the filters

>>> L = np.ones(2)/np.sqrt(2)

>>> H = np.array([-1,1])/np.sqrt(2)

>>> # initialize a signal X

>>> X = np.sin(np.linspace(0,2*np.pi,16))

>>> # convolve X with L

>>> fftconvolve(X,L)

[-1.84945741e-16 2.87606238e-01 8.13088984e-01 1.19798126e+00

1.37573169e+00 1.31560561e+00 1.02799937e+00 5.62642704e-01

7.87132986e-16 -5.62642704e-01 -1.02799937e+00 -1.31560561e+00

-1.37573169e+00 -1.19798126e+00 -8.13088984e-01 -2.87606238e-01

-1.84945741e-16]

The convolution operation alone gives us redundant information, so we down-sample
to keep only what we need. In particular, we will down-sample by a factor of two,
which means keeping only every other entry:

112 Lab 11. Intro to Wavelets

>>> # down-sample an array X

>>> sampled = X[1::2]

Putting these two operations together, we can obtain the approximation coe�cients
in one line of code:

>>> A = fftconvolve(X,L)[1::2]

Computing the detail coe�cients is done in exactly the same way, replacing L with
H.

Problem 1. Write a function that calculates the discrete wavelet transform
as described above. The output should be a list of one-dimensional NumPy
arrays in the following form: [A

n

, D
n

, . . . , D1].

The main body of your function should be a loop in which you calculate
two arrays: the i-th approximation and detail coe�cients. Append the detail
coe�cients array to your list, and feed the approximation array back into the
loop. When the loop is finished, append the approximation array. Finally,
reverse the order of your list to adhere to the required return format.

Test your function by calculating the Haar wavelet coe�cients of a noisy
sine signal for n = 4:

>>> domain = np.linspace(0, 4*np.pi, 1024)

>>> noise = np.random.randn(1024)*.1

>>> noisysin = np.sin(domain) + noise

>>> coeffs = dwt(noisysin, L, H, 4)

Plot your results and verify that they match the plots in Figure 11.2.

Figure 11.2: A level 4 wavelet decomposition of a signal. The top panel is the origi-
nal signal, the next panel down is the approximation, and the remaining panels are
the detail coe�cients. Notice how the approximation resembles a smoothed version
of the original signal, while the details capture the high-frequency oscillations and
noise.

113

We can now transform a one-dimensional signal into its wavelet coe�cients,
but the reverse transformation is just as important. Luckily, we can reconstruct a
signal from the approximation and detail coe�cients. We reverse the e↵ects of the
filterbank, using slightly modified filters, essentially adding the details back into the
signal at each stage until we reach the original. The Haar wavelet filters for the
inverse transformation are

L =
h

1p
2

1p
2

i

H =
h

1p
2

� 1p
2

i
.

Suppose we have the wavelet coe�cients A
n

and D
n

. Consulting Figure 11.1,
we can recreate A

n�1 by tracing the schematic backwards: A
n

and D
n

are first
up-sampled, then they are convolved with L and H, respectively, and finally added
together to obtain A

n�1. Up-sampling means doubling the length of an array by
inserting a 0 at every other position.

>>> # up-sample the coefficient arrays A, D

>>> up_A = np.zeros(2*A.size)

>>> up_A[::2] = A

>>> up_D = np.zeros(2*D.size)

>>> up_D[::2] = D

>>> # now convolve and add, but discard last entry

>>> A = fftconvolve(up_A,L)[:-1] + fftconvolve(up_D,H)[:-1]

Now that we have A
n�1, we repeat the process with A

n�1 and D
n�1 to obtain

A
n�2. Proceed for a total of n steps (one for each D

n

, D
n�1, . . . , D1) until we have

obtained A0. Since A0 is defined to be the original signal, we have finished the
inverse transformation.

Problem 2. Write a function that calculates the inverse wavelet transform
as described above. The inputs should be a list of arrays (of the same form as
the output of your discrete wavelet transform function), the low-pass filter,
and the high-pass filter. The output should be a single array, the recovered
signal.

Note that the input list of arrays has length n + 1 (consisting of A
n

together with D
n

, D
n�1, . . . , D1), so your code should perform the process

given above n times.

In order to check your work, compute the discrete wavelet transform of a
random array for di↵erent values of n, then compute the inverse transform.
Compare the original signal with the recovered signal using np.allclose.

114 Lab 11. Intro to Wavelets

The PyWavelets Module

Having implemented our own version of the basic 1-dimensional wavelet transform,
we now turn to PyWavelets, a Python library for Wavelet Analysis. It provides
convenient and e�cient methods to calculate the one- and two-dimensional discrete
Wavelet transform, as well as much more.

If you have the Anaconda distribution, then you can install PyWavelets simply
with the command:

$ conda install -c ioos pywavelets=0.4.0

Once the package has been installed on your machine, type the following to get
started:

>>> import pywt

Performing the discrete Wavelet transform is very simple. Below, we compute
the one-dimensional transform for a sinusoidal signal.

>>> import numpy as np

>>> f = np.sin(np.linspace(0,8*np.pi, 256)) # build the sine wave

>>> fw = pywt.wavedec(f, 'haar') # compute the wavelet coefficients of f

The variable fw is now a list of arrays, starting with the final approximation
frame, followed by the various levels of detail coe�cients, just like the output of
the wavelet transform function that you already coded. Plot the level 2 detail and
verify that it resembles a blocky sinusoid.

>>> from matplotlib import pyplot as plt

>>> plt.plot(fw[-2], linestyle='steps')
>>> plt.show()

To reconstruct the signal, we simply call the function waverec:

>>> f_prime = pywt.waverec(fw, 'haar') # reconstruct the signal

>>> np.allclose(f_prime, f) # compare with the original

True

The second positional argument, as you will notice, is a string that gives the
name of the wavelet to be used. We first used the Haar wavelet, with which you
are already familiar. PyWavelets supports a number of di↵erent Wavelets, however,
which you can list by executing the following code:

>>> # list the available Wavelet families

>>> print pywt.families()

['haar', 'db', 'sym', 'coif', 'bior', 'rbio', 'dmey']
>>> # list the available wavelets in the coif family

>>> print pywt.wavelist('coif')
['coif1', 'coif2', 'coif3', 'coif4', 'coif5']

Di↵erent wavelets have di↵erent properties; the most suitable wavelet is dependent
on the specific application. See Figure 11.3 for the plots of a couple of additional
wavelets.

115

Figure 11.3: Examples of di↵erent mother wavelets.

The 2-dimensional Wavelet Transform

We can generalize the wavelet transform for two dimensions much as we generalized
the Fourier transform. This allows us to perform wavelet analysis on, for example,
digital images. In particular, we can calculate the wavelet transform of a two-
dimensional array by first transforming the rows, and then the columns of the
array.

When implemented as an iterative filterbank, each pass through the filterbank
yields an approximation plus three sets of detail coe�cients rather than just one.
More specifically, if the two-dimensional array X is the input to the filterbank, we
obtain arrays LL, LH, HL, and HH, where LL is a smoothed approximation of
X and the other three arrays contain wavelet coe�cients capturing high-frequency
oscillations in vertical, horizontal, and diagonal directions. In the jargon of signal
processing, the arrays LL, LH, HL, and HH are called subbands. By recursively
feeding any or all of the subbands back into the filterbank, we can decompose
an input array into a collection of many subbands. This decomposition can be
represented schematically by a dyadic partition of a rectangle, called a subband
pattern. The subband pattern for one pass of the filterbank is shown in Figure 11.4,
with a concrete example given in Figure 11.5.

X

LL LH

HL HH

Figure 11.4: The subband pattern for one step in the 2-dimensional wavelet trans-
form.

116 Lab 11. Intro to Wavelets

Figure 11.5: Subbands for the Mandrill image after one pass through the filterbank.
Note how the upper left subband (LL) is an approximation of the original Mandrill
image, while the other three subbands highlight the stark vertical, horizontal, and
diagonal changes in the image.
Original image source: http://sipi.usc.edu/database/.

The wavelet coe�cients that we obtain from a two-dimensional wavelet trans-
form are very useful in a variety of image processing tasks. They allow us to analyze
and manipulate images in terms of both their frequency and spatial properties, and
at di↵ering levels of resolution. Furthermore, wavelet bases often have the remark-
able ability to represent images in a very sparse manner – that is, most of the image
information is captured by a small subset of the wavelet coe�cients. This is the
key fact for wavelet-based image compression.

PyWavelets provides a simple way to calculate the subbands resulting from one
pass through the filterbank.

>>> from scipy.misc import imread

>>> # flag True produces a grayscale image

>>> mandrill = imread('mandrill1.png', True)

>>> # use the db4 wavelet with periodic extension

>>> lw = pywt.dwt2(mandrill, 'db4', mode='per')

Note that the mode keyword argument determines the type of extension mode (re-
quired for the convolution operation). The variable lw is a list. The first entry of

http://sipi.usc.edu/database/

117

the list is the LL, or approximation, subband. The second entry of the list is a
tuple containing the remaining subbands, LH, HL, and HH (in that order). Plot
these subbands as follows:

>>> plt.subplot(221)

>>> plt.imshow(np.abs(lw[0]), cmap='gray')
>>> plt.subplot(222)

>>> plt.imshow(np.abs(lw[1][0]), cmap='gray')
>>> plt.subplot(223)

>>> plt.imshow(np.abs(lw[1][1]), cmap='gray')
>>> plt.subplot(224)

>>> plt.imshow(np.abs(lw[1][2]), cmap='gray')
>>> plt.show()

Problem 3. Plot the subbands of the file swanlake_polluted.png as described
above. Compare this with the subbands the mandrill image shown in Figure
11.5.

Image Processing

We are now ready to use the two-dimensional wavelet transform for image pro-
cessing. Wavelets are especially good at filtering out high-frequency noise from an
image. Just as we were able to pinpoint the noise added to the sine wave in Figure
11.2, the majority of the noise added to an image will be contained in the final
LH, HL, and HH detail subbands of our wavelet decomposition. If we decompose
our image and reconstruct it with all subbands except these final subbands, we will
eliminate most of the troublesome noise while preserving the primary aspects of the
image.

We perform this cleaning as follows:

image = imread(filename,True)

wavelet = pywt.Wavelet('haar')
WaveletCoeffs = pywt.wavedec2(image,wavelet)

new_image = pywt.waverec2(WaveletCoeffs[:-1], wavelet)

Problem 4. Write a function called clean_image() which accepts the name
of a grayscale image file and cleans high-frequency noise out of the image.
Load the image as an ndarray, and perform a wavelet decomposition using
PyWavelets. Reconstruct the image using all subbands except the last set of
detail coe�cients, and return this cleaned image as an ndarray.

118 Lab 11. Intro to Wavelets

Additional Material

Image Compression

Numerous image compression techniques have been developed over the years to
reduce the cost of storing large quantities of images. Transform methods based on
Fourier and Wavelet analysis have long played an important role in these techniques;
for example, the popular JPEG image compression standard is based on the discrete
cosine transform. The JPEG2000 compression standard and the FBI Fingerprint
Image database, along with other systems, take the wavelet approach.

The general framework for compression is fairly straightforward. First, the image
to be compressed undergoes some form of preprocessing, depending on the particular
application. Next, the discrete wavelet transform is used to calculate the wavelet
coe�cients, and these are then quantized, i.e. mapped to a set of discrete values
(for example, rounding to the nearest integer). The quantized coe�cients are then
passed through an entropy encoder (such as Hu↵man Encoding), which reduces
the number of bits required to store the coe�cients. What remains is a compact
stream of bits that can then be saved or transmitted much more e�ciently than
the original image. The steps above are nearly all invertible (the only exception
being rounding), allowing us to almost perfectly reconstruct the image from the
compressed bitstream. See Figure 11.6.

Image Pre-Processing Wavelet Decomposition

Quantization Entropy Coding Bit Stream

Figure 11.6: Wavelet Image Compression Schematic

