
Lab 14

CVXOPT

Lab Objective: Introduce some of the basic optimization functions available in
the CVXOPT package

Notebox: CVXOPT is not part of the standard library, nor is it included in the
Anaconda distribution. To install CVXOPT, use the following commands:

for Windows: conda install -c http://conda.anaconda.org/omnia cvxopt

for Unix: pip install cvxopt End notebox.

Linear Programs

CVXOPT is a package of Python functions and classes designed for the purpose of
convex optimization. In this lab we will focus on linear and quadratic programming.
A linear program is a linear constrained optimization problem. Such a problem can
be stated in several di↵erent forms, one of which is

minimize cTx

subject to Gx+ s = h

Ax = b

s � 0.

This is the formulation used by CVXOPT. In this formulation, we require that the
matrix A has full row rank, and that the block matrix [G A]T has full column
rank.

Note that the constraint Gx+s = h includes the term s, which is not part of the
objective function, and is known as the slack variable. Since s � 0, the constraint
Gx+ s = h is equivalent to Gx  h.

Consider the following example:

minimize � 4x1 � 5x2

subject to x1 + 2x2  3

2x1 + x2  3

x1, x2 � 0

135

136 Lab 14. CVXOPT

The final two constraints, x1, x2 � 0, need to be adjusted to be  constraints. This
is easily done by multiplying by �1, resulting in the constraints �x1,�x2  0. If
we define

G =

2

664

1 2
2 1
�1 0
0 �1

3

775 and h =

2

664

3
3
0
0

3

775 ,

then we can express the constraints compactly as

Gx  h, where x =


x1

x2

�
.

By adding a slack variable s, we can write our constraints as

Gx+ s = h,

which matches the form discussed above. In the case of this particular example, we
ignore the extra constraint

Ax = b,

since we were given no equality constraints.

Now we proceed to solve the problem using CVXOPT. We need to initialize the
arrays c, G, and h, and then pass them to the appropriate function. CVXOPT uses
its own data type for an array or matrix, and while similar to the NumPy array,
it does have a few di↵erences, especially when it comes to initialization. Below, we
initialize CVXOPT matrices for c, G, and h.

>>> from cvxopt import matrix

>>> c = matrix([-4., -5.])

>>> G = matrix([[1., 2., -1., 0.],[2., 1., 0., -1.]])

>>> h = matrix([3., 3., 0., 0.])

Achtung!

Observe that CVXOPT matrices are initialized column-wise rather than row-
wise (as in the case of NumPy).

Alternatively, we can initialize the arrays first in NumPy (a process with
which you should be familiar), and then simply convert them to the CVXOPT
matrix data type:

>>> import numpy as np

>>> c = np.array([-4., -5.])

>>> G = np.array([[1., 2.],[2., 1.],[-1., 0.],[0., -1]])

>>> h = np.array([3., 3., 0., 0.])

>>> #Now convert to CVXOPT matrix type

>>> c = matrix(c)

>>> G = matrix(G)

>>> h = matrix(h)

Use whichever method is most convenient. In this lab, we will initialize non-

137

trivial matrices first as ndarrays for consistency.

Finally, be sure the entries in the matrices are floats!

Having initialized the necessary objects, we are now ready to solve the problem.
We will use the CVXOPT function for linear programming solvers.lp, and we simply
need to pass in c, G, and h as arguments.

>>> from cvxopt import solvers

>>> sol = solvers.lp(c, G, h)

pcost dcost gap pres dres k/t

0: -8.1000e+00 -1.8300e+01 4e+00 0e+00 8e-01 1e+00

1: -8.8055e+00 -9.4357e+00 2e-01 1e-16 4e-02 3e-02

2: -8.9981e+00 -9.0049e+00 2e-03 1e-16 5e-04 4e-04

3: -9.0000e+00 -9.0000e+00 2e-05 1e-16 5e-06 4e-06

4: -9.0000e+00 -9.0000e+00 2e-07 1e-16 5e-08 4e-08

Optimal solution found.

>>> print sol['x']
[1.00e+00]

[1.00e+00]

>>> print sol['primal objective']
-8.99999981141

>>> print type(sol['x'])
<type 'cvxopt.base.matrix'>

Note

Although it is often helpful to see the progress of each iteration of the algo-
rithm, you may suppress this output by first running,

solvers.options['show_progress'] = False

The function solvers.lp returns a dictionary containing useful information. For
the time being, we will only focus on the values of x and the primal objective value
(i.e. the minimum value achieved by the objective function).

Achtung!

Note that the minimizer of the solvers.lp() function returns a cvxopt.base.

matrix object. In order to use the minimzer again in other algebraic expressions,
you need to convert it first to a flattened numpy array, which can be done
quickly with np.ravel(). Please return all minimizers in this lab as flattened
numpy arrays.

138 Lab 14. CVXOPT

Problem 1. Solve the following convex optimization problem:

minimize 2x1 + x2 + 3x3

subject to x1 + 2x2 � 3

2x1 + 10x2 + 3x3 � 10

x1 � 0

x2 � 0

x3 � 0

Report the values for x and the objective value that you obtain. Remember
to make the necessary adjustments so that all inequality constraints are 
rather than �.

The l1 minimization problem is to

minimize kxk1
subject to Ax = b.

This problem can be converted into a linear program by introducing an addi-
tional vector u of length n, and then solving:

minimize
⇥
1 0

⇤ u
x

�

subject to


�I I
�I �I

� 
u
x

�



0
0

�
,

⇥
0 A

⇤ u
x

�
= b.

Of course, solving this gives values for the optimal u and the optimal x, but we only
care about the optimal x.

Problem 2. Write a function called l1Min() that takes a matrix A and vector
b as inputs, and solves the l1 optimization problem. Report the values for x
and the objective value. Remember to first discard the unneccesary u values
from the minimizer.

The Transportation Problem

Consider the following transportation problem: A piano company needs to transport
thirteen pianos from their three supply centers (denoted by 1, 2, 3) to two demand
centers (4, 5). Transporting a piano from a supply center to a demand center incurs
a cost, listed in Table 14.3. The company wants to minimize shipping costs for the

139

Supply Center Number of pianos available
1 7
2 2
3 4

Table 14.1: Number of pianos available at each supply center

Demand Center Number of pianos needed
4 5
5 8

Table 14.2: Number of pianos needed at each demand center

pianos while meeting the demand. How many pianos should each supply center
send to each demand center?

The variables p, q, r, s, t, and u must be nonnegative and satisfy the following
three supply constraints and two demand constraints:

p+ q = 7

r + s = 2

t+ u = 4

p+ r + t = 5

q + s+ u = 8

The objective function is the number of pianos shipped from each location mul-
tiplied by the respective cost:

4p+ 7q + 6r + 8s+ 8t+ 9u.

There a several ways to solve this linear program. We want our answers to be
integers, and this added constraint in general turns out to be an NP-hard problem.
There is a whole field devoted to dealing with integer constraints, called integer
linear programming, which is beyond the scope of this lab. Fortunately, we can
treat this particular problem as a standard linear program and still obtain integer
solutions.

Here, G and h constrain the variables to be non-negative. Because CVXOPT
uses the format Gx  h, we see that G must be a 6⇥ 6 identity matrix multiplied
by �1, and h is just a column vector of zeros. The matrices A and b represent the
supply and demand constraints, since these are equality constraints. Try initializing
these arrays and solving the linear program by entering the code below. (Notice
that we pass more arguments to solvers.lp since we have equality constraints.)

>>> c = matrix([4., 7., 6., 8., 8., 9])

>>> G = matrix(-1*np.eye(6))

>>> h = matrix(np.zeros(6))

>>> A = matrix(np.array([[1.,1.,0.,0.,0.,0.],

[0.,0.,1.,1.,0.,0.],

[0.,0.,0.,0.,1.,1.],

[1.,0.,1.,0.,1.,0.],

140 Lab 14. CVXOPT

Supply Center Demand Center Cost of transportation Number of pianos
1 4 4 p
1 5 7 q
2 4 6 r
2 5 8 s
3 4 8 t
3 5 9 u

Table 14.3: Cost of transporting one piano from a supply center to a demand center

[0.,1.,0.,1.,0.,1.]]))

>>> b = matrix([7., 2., 4., 5., 8.])

>>> sol = solvers.lp(c, G, h, A, b)

pcost dcost gap pres dres k/t

0: 8.9500e+01 8.9500e+01 2e+01 4e-17 2e-01 1e+00

Terminated (singular KKT matrix).

>>> print sol['x']
[3.00e+00]

[4.00e+00]

[5.00e-01]

[1.50e+00]

[1.50e+00]

[2.50e+00]

>>> print sol['primal objective']
89.5

Notice that some problems occurred. First, CVXOPT alerted us to the fact that the
algorithm terminated prematurely (due to a singular matrix). Further, the solution
that was obtained does not consist of integer entries.

So what went wrong? Recall that the matrix A is required to have full row rank,
but we can easily see that the rows of A are linearly dependent. We rectify this by
converting the last row of the equality constraints into inequality constraints, so that
the remaining equality constraints define a new matrix A with linearly independent
rows.

This is done as follows:

Suppose we have the equality constraint

x+ 2y � 3z = 4.

This is equivalent to the pair of inequality constraints

x+ 2y � 3z  4,

x+ 2y � 3z � 4.

Of course, we require only  constraints, so we obtain the pair of constraints

x+ 2y � 3z  4,

�x� 2y + 3z  �4.

Apply this process to the last equality constraint. You will obtain a new matrix
G with several additional rows (to account for the new inequality constraints); a new
vector h, also with more entries; a smaller matrix A; a smaller vector b.

141

Problem 3. Solve the problem by converting the last equality constraint
into an inequality constraint. Report the optimal values for x and the ob-
jective function.

Quadratic Programming

Quadratic programming is similar to linear programming, one exception being that
the objective function is quadratic rather than linear. The constraints, if there are
any, are still of the same form. Thus G, h,A, and b are optional. The formulation
that we will use is

minimize
1

2
xTPx+ qTx

subject to Gx  h

Ax = b,

where P is a positive semidefinite symmetric matrix. In this formulation, we require
again that A has full row rank, and that the block matrix [P G A]T has full
column rank.

As an example, let us minimize the quadratic function

f(y, z) = 2y2 + 2yz + z2 + y � z.

Note that there are no constraints, so we only need to initialize the matrix P and
the vector q. To find these, we first rewrite our function to match the formulation
given above. Note that if we let

P =


a b
b c

�
, q =


d
e

�
, and x =


y
z

�
,

then

1

2
xTPx+ qTx =

1

2


y
z

�T 
a b
b c

� 
y
z

�
+


d
e

�T 
y
z

�

=
1

2
ay2 + byz +

1

2
cz2 + dy + ez

Thus, we see that the proper values to initizalize our matrix P and vector q are:

a = 4 d = 1

b = 2 e = �1

c = 2

Now that we have the matrix P and vector q, we are ready to use the CVXOPT
function for quadratic programming solvers.qp.

>>> P = matrix(np.array([[4., 2.], [2., 2.]]))

>>> q = matrix([1., -1.])

142 Lab 14. CVXOPT

>>> sol=solvers.qp(P, q)

>>> print(sol['x'])
[-1.00e+00]

[1.50e+00]

>>> print sol['primal objective']
-1.25

Problem 4. Find the minimizer and minimum of

g(x, y, z) =
3

2
x2 + 2xy + xz + 2y2 + 2yz +

3

2
z2 + 3x+ z

Problem 5. The l2 minimization problem is to

minimize kxk2
subject to Ax = b.

This problem is equivalent to a quadratic program, since kxk2 = xTx.
Write a function called l2Min() that takes a matrix A and vector b as inputs
and solves the l2 minimization problem. Report the values for x and the
objective value.

Allocation Models

Allocation models lead to simple linear programs. An allocation model seeks to al-
locate a valuable resource among competing needs. Consider the following example
is taken from “Optimization in Operations Research” by Ronald L. Rardin.

The U.S. Forest service has used an allocation model to deal with the task
of managing national forests. The model begins by dividing the land into a set of
analysis areas. Several land management policies (also called prescriptions) are then
proposed and evaluated for each area. An allocation is how much land (in acreage)
in each unique analysis area will be assigned to each of the possible prescriptions.
We seek to find the best possible allocation, subject to forest-wide restrictions on
land use.

The file ForestData.npy contains data for a fictional national forest (you can also
find the data in Table ??). There are 7 areas of analysis and 3 prescriptions for

143

each of them.

Column 1: i, area of analysis

Column 2: s
i

, size of the analysis area (in thousands of acres)

Column 3: j, prescription number

Column 4: p
i,j

, net present value (NPV) per acre of in area i under prescription j

Column 5: t
i,j

, protected timber yield per acre in area i under prescription j

Column 6: g
i,j

, protected grazing capability per acre for area i under prescription j

Column 7: w
i,j

, wilderness index rating (0 to 100) for area i under prescription j

Let x
i,j

be the amount of land in area i allocated to prescription j. Under this

Forest Data
Analysis Acres Prescrip- NPV, Timber, Grazing, Wilderness
Area, (1000)’s tion (per acre) (per acre) (per acre) Index,

i s
i

j p
i,j

t
i,j

g
i,j

w
i,j

1 75 1 503 310 0.01 40
2 140 50 0.04 80
3 203 0 0 95

2 90 1 675 198 0.03 55
2 100 46 0.06 60
3 45 0 0 65

3 140 1 630 210 0.04 45
2 105 57 0.07 55
3 40 0 0 60

4 60 1 330 112 0.01 30
2 40 30 0.02 35
3 295 0 0 90

5 212 1 105 40 0.05 60
2 460 32 0.08 60
3 120 0 0 70

6 98 1 490 105 0.02 35
2 55 25 0.03 50
3 180 0 0 75

7 113 1 705 213 0.02 40
2 60 40 0.04 45
3 400 0 0 95

notation, an allocation is just a vector consisting of the x
i,j

’s. For this particular
example, the allocation vector is of size 7 · 3 = 21. Our goal is to find the allocation
vector that maximizes net present value, while producing at least 40 million board-
feet of timber, at least 5 thousand animal-unit months of grazing, and keeping the
average wilderness index at least 70.

Of course, the allocation vector is also constrained to be nonnegative, and all of
the land must be allocated precisely.

Note that since acres are in thousands, we will divide the constraints of timber
and animal months of grazing by 1000 in our problem setup, and compensate for

144 Lab 14. CVXOPT

this after we obtain a solution. We can summarize our problem as follows:

maximize
7X

i=1

3X

j=1

p
i,j

x
i,j

subject to
3X

j=1

x
i,j

= s
i

for i = 1, .., 7

7X

i=1

3X

j=1

t
i,j

x
i,j

� 40, 000

7X

i=1

3X

j=1

g
i,j

x
i,j

� 5

1

788

7X

i=1

3X

j=1

w
i,j

x
i,j

� 70

x
i,j

� 0 for i = 1, ..., 7 and j = 1, 2, 3

Problem 6. Solve the problem above. Return the minimizer x of x
i,j

’s.
Also return the maximum total net present value, which will be equal to
the primal objective of the appropriately minimized linear function, multi-
plied by -1000. (This final multiplication after we have obtained a solution
changes our answer to be a maximum, and compensates for the data being
in thousands of acres).

You can learn more about CVXOPT at http://abel.ee.ucla.edu/cvxopt/

documentation/.

http://abel.ee.ucla.edu/cvxopt/documentation/
http://abel.ee.ucla.edu/cvxopt/documentation/

