
Lab 14

The Simplex Method

Lab Objective: The Simplex Method is a straightforward algorithm for finding
optimal solutions to optimization problems with linear constraints and cost func-
tions. Because of its simplicity and applicability, this algorithm has been named one
of the most important algorithms invented within the last 100 years. In this lab, we
implement a standard Simplex solver for the primal problem.

Standard Form

The Simplex Algorithm accepts a linear constrained optimization problem, also
called a linear program, in the form given below:

maximize cTx

subject to Ax � b

x ⌫ 0

Note that any linear program can be converted to standard form, so there is no loss
of generality in restricting our attention to this particular formulation.

Such an optimization problem defines a region in space called the feasible region,
the set of points satisfying the constraints. Because the constraints are all linear,
the feasible region forms a geometric object called a polytope, having flat faces and
edges (see Figure 14.1). The Simplex Algorithm jumps among the vertices of the
feasible region searching for an optimal point. It does this by moving along the
edges of the feasible region in such a way that the objective function is always
increased after each move.

139

140 Lab 14. The Simplex Method

(a) The feasible region for a linear program

with 2-dimensional constraints.

x⇤

(b) The feasible region for a linear program

with 3-dimensional constraints.

Figure 14.1: If an optimal point exists, it is one of the vertices of the polyhedron.
The simplex algorithm searches for optimal points by moving between adjacent
vertices in a direction that increases the value of the objective function until it finds
an optimal vertex.

Implementing the Simplex Algorithm is straightforward, provided one carefully
follows the procedure. We will break the algorithm into several small steps, and
write a function to perform each one. To become familiar with the execution of the
Simplex algorithm, it is helpful to work several examples by hand.

The Simplex Solver

Our program will be more lengthy than many other lab exercises and will consist of a
collection of functions working together to produce a final result. It is important to
clearly define the task of each function and how all the functions will work together.
If this program is written haphazardly, it will be much longer and more di�cult to
read than it needs to be. We will walk you through the steps of implementing the
Simplex Algorithm as a Python class.

For demonstration purposes, we will use the following linear program.

maximize 3x
0

+ 2x
1

subject to x
0

� x
1

 2

3x
0

+ x
1

 5

4x
0

+ 3x
1

 7

x
0

, x
1

� 0.

Accepting a Linear Program

Our first task is to determine if we can even use the Simplex algorithm. Assuming
that the problem is presented to us in standard form, we need to check that the
feasible region includes the origin.

141

Problem 1. Write a class that accepts the arrays c, A, and b of a linear
optimization problem in standard form. In the constructor, check that the
system is feasible at the origina. That is, check that Ax � b when x = 0.
Raise a ValueError if the problem is not feasible at the origin.

a
For now, we only check for feasibility at the origin. A more robust solver sets up the

auxiliary problem and solves it to find a starting point if the origin is infeasible.

Adding Slack Variables

The next step is to convert the inequality constraints Ax � b into equality con-
straints by introducing a slack variable for each constraint equation. If the con-
straint matrix A is an m⇥ n matrix, then there are m slack variables, one for each
row of A. Grouping all of the slack variables into a vector w of length m, the
constraints now take the form Ax+w = b. In our example, we have

w =

2

4

x
2

x
3

x
4

3

5

When adding slack variables, it is useful to represent all of your variables, both
the original primal variables and the additional slack variables, in a convenient
manner. One e↵ective way is to refer to a variable by its subscript. For example,
we can use the integers 0 through n�1 to refer to the original (non-slack) variables
x
0

through x
n�1

, and we can use the integers n through n+m�1 to track the slack
variables (where the slack variable corresponding to the ith row of the constraint
matrix is represented by the index n+ i� 1).

We also need some way to track which variables are basic (non-zero) and which
variables are nonbasic (those that have value 0). A useful representation for the
variables is a Python list (or NumPy array), where the elements of the list are
integers. Since we know how many basic variables we have (m), we can partition
the list so that all the basic variables are kept in the first m locations, and all the
non-basic variables are stored at the end of the list. The ordering of this list is
important. In particular, if i  m, the ith element of the list represents the basic
variable corresponding to the ith row of A. Henceforth we will refer to this list as
the index list.

Initially, the basic variables are simply the slack variables, and their values
correspond to the values of the vector b. In our example, we have 2 primal variables
x
0

and x
1

, and we must add 3 slack variables. Thus, we instantiate the following
index list:

>>> L = [2, 3, 4, 0, 1]

Notice how the first 3 entries of the index list are 2, 3, 4, the indices representing
the slack variables. This reflects the fact that the basic variables at this point are
exactly the slack variables.

142 Lab 14. The Simplex Method

As the Simplex Algorithm progresses, however, the basic variables change, and
it will be necessary to swap elements in our index list. For example, suppose the
variable represented by the index 4 becomes nonbasic, while the variable represented
by index 0 becomes basic. In this case we swap these two entries in the index list.

>>> L[2], L[3] = L[3], L[2]

>>> L

[2, 3, 0, 4, 1]

Now our index list tells us that the current basic variables have indices 2, 3, 0.

Problem 2. Design and implement a way to store and track all of the basic
and non-basic variables.

Hint: Using integers that represent the index of each variable is useful
for Problem 4.

Creating a Tableau

After we have determined that our program is feasible, we need to create the tableau
(sometimes called the dictionary), a data structure to track the state of the algo-
rithm. You may structure the tableau to suit your specific implementation. Re-
member that your tableau will need to include in some way the slack variables that
you created in Problem 2.

There are many di↵erent ways to build your tableau. One way is to mimic the
tableau that is often used when performing the Simplex Algorithm by hand. Define

Ā =
⇥

A I
m

⇤

,

where I
m

is the m⇥m identity matrix, and define

c̄ =



c

0

�

.

That is, c̄ 2 Rn+m such that the first n entries are c and the final m entries are
zeros. Then the initial tableau has the form

T =



0 �c̄T 1
b Ā 0

�

(14.1)

The columns of the tableau correspond to each of the variables (both primal
and slack), and the rows of the tableau correspond to the basic variables. Using the
convention introduced above of representing the variables by indices in the index
list, we have the following correspondence:

column i , index i� 2, i = 2, 3, . . . , n+m+ 1,

and
row j , L

j�1

, j = 2, 3, . . . ,m+ 1,

143

where L
j�1

refers to the (j � 1)th entry of the index list.

For our example problem, the initial index list is

L = (2, 3, 4, 0, 1),

and the initial tableau is

T =

2

6

6

4

0 �3 �2 0 0 0 1
2 1 �1 1 0 0 0
5 3 1 0 1 0 0
7 4 3 0 0 1 0

3

7

7

5

.

The third column corresponds to index 1, and the fourth row corresponds to index
4, since this is the third entry of the index list.

The advantage of using this kind of tableau is that it is easy to check the progress
of your algorithm by hand. The disadvantage is that pivot operations require careful
bookkeeping to track the variables and constraints.

Problem 3. Add a method to your Simplex solver that will create the initial
tableau as a NumPy array.

Pivoting

Pivoting is the mechanism that really makes Simplex useful. Pivoting refers to the
act of swapping basic and nonbasic variables, and transforming the tableau appro-
priately. This has the e↵ect of moving from one vertex of the feasible polytope to
another vertex in a way that increases the value of the objective function. Depend-
ing on how you store your variables, you may need to modify a few di↵erent parts
of your solver to reflect this swapping.

When initiating a pivot, you need to determine which variables will be swapped.
In the tableau representation, you first find a specific element on which to pivot,
and the row and column that contain the pivot element correspond to the variables
that need to be swapped. Row operations are then performed on the tableau so
that the pivot column becomes an elementary vector.

Let’s break it down, starting with the pivot selection. We need to use some
care when choosing the pivot element. To find the pivot column, search from left
to right along the top row of the tableau (ignoring the first column), and stop once
you encounter the first negative value. The index corresponding to this column will
be designated the entering index, since after the full pivot operation, it will enter
the basis and become a basic variable.

Using our initial tableau T in the example, we stop at the second column:

T =

2

6

6

4

0 �3 �2 0 0 0 1
2 1 �1 1 0 0 0
5 3 1 0 1 0 0
7 4 3 0 0 1 0

3

7

7

5

144 Lab 14. The Simplex Method

We now know that our pivot element will be found in the second column. The
entering index is thus 0.

Next, we select the pivot element from among the positive entries in the pivot
column (ignoring the entry in the first row). If all entries in the pivot column are
non-positive, the problem is unbounded and has no solution. In this case, the algo-
rithm should terminate. Otherwise, assuming our pivot column is the jth column
of the tableau and that the positive entries of this column are T

i1,j , Ti2,j , . . . , Tik,j ,
we calculate the ratios

T
i1,1

T
i1,j

,
T
i2,1

T
i2,j

, . . . ,
T
ik,1

T
ik,j

,

and we choose our pivot element to be one that minimizes this ratio. If multiple
entries minimize the ratio, then we utilize Bland’s Rule, which instructs us to choose
the entry in the row corresponding to the smallest index (obeying this rule is impor-
tant, as it prevents the possibility of the algorithm cycling back on itself infinitely).
The index corresponding to the pivot row is designated as the leaving index, since
after the full pivot operation, it will leave the basis and become a nonbasic variable.

In our example, we see that all entries in the pivot column (ignoring the entry
in the first row, of course) are positive, and hence they are all potential choices for
the pivot element. We then calculate the ratios, and obtain

2

1
= 2,

5

3
= 1.66...,

7

4
= 1.75.

We see that the entry in the third row minimizes these ratios. Hence, the element
in the second column, third row is our designated pivot element, and our leaving
index is L

2

= 3:

T =

2

6

6

4

0 �3 �2 0 0 0 1
2 1 �1 1 0 0 0
5 3 1 0 1 0 0
7 4 3 0 0 1 0

3

7

7

5

Problem 4. Write a method that will determine the pivot row and pivot
column according to Bland’s Rule.

Definition 14.1 (Bland’s Rule). Choose the nonbasic variable with the
smallest index that has a positive coe�cient in the objective function as the
leaving variable. Choose the basic variable with the smallest index among all
the binding basic variables.

Bland’s Rule is important in avoiding cycles when performing pivots.
This rule guarantees that a feasible Simplex problem will terminate in a
finite number of pivots.

The next step is to swap the entering and leaving indices in our index list. In
the example, we determined above that these indices are 0 and 3. We swap these

145

two elements in our index list, and the updated index list is now

L = (2, 0, 4, 3, 1),

so the basic variables are now given by the indices 2, 0, 4.

Finally, we perform row operations on our tableau in the following way: divide
the pivot row by the value of the pivot entry. Then use the pivot row to zero out
all entries in the pivot column above and below the pivot entry. In our example, we
first divide the pivot row by 3, and then zero out the two entries above the pivot
element and the single entry below it:

2

6

6

4

0 �3 �2 0 0 0 1
2 1 �1 1 0 0 0
5 3 1 0 1 0 0
7 4 3 0 0 1 0

3

7

7

5

!

2

6

6

4

0 �3 �2 0 0 0 1
2 1 �1 1 0 0 0
5/3 1 1/3 0 1/3 0 0
7 4 3 0 0 1 0

3

7

7

5

!

2

6

6

4

5 0 �1 0 1 0 1
2 1 �1 1 0 0 0
5/3 1 1/3 0 1/3 0 0
7 4 3 0 0 1 0

3

7

7

5

!

2

6

6

4

5 0 �1 0 1 0 1
1/3 0 �4/3 1 �1/3 0 0
5/3 1 1/3 0 1/3 0 0
7 4 3 0 0 1 0

3

7

7

5

!

2

6

6

4

5 0 �1 0 1 0 1
1/3 0 �4/3 1 �1/3 0 0
5/3 1 1/3 0 1/3 0 0
1/3 0 5/3 0 �4/3 1 0

3

7

7

5

.

The result of these row operations is our updated Tableau, and the pivot operation
is complete.

Problem 5. Add a method to your solver that checks for unboundedness
and performs a single pivot operation from start to completion. If the prob-
lem is unbounded, raise a ValueError.

Termination and Reading the Tableau

Up to this point, our algorithm accepts a linear program, adds slack variables, and
creates the initial tableau. After carrying out these initial steps, it then performs
the pivoting operation iteratively until the optimal point is found. But how do we
determine when the optimal point is found? The answer is to look at the top row
of the tableau. More specifically, before each pivoting operation, check whether all
of the entries in the top row of the tableau (ignoring the entry in the first column)
are nonnegative. If this is the case, then we have found an optimal solution, and so
we terminate the algorithm.

The final step is to report the solution. The ending state of the tableau and
index list tell us everything we need to know. The maximum value attained by the
objective function is found in the upper leftmost entry of the tableau. The nonbasic
variables, whose indices are located in the last n entries of the index list, all have
the value 0. The basic variables, whose indices are located in the first m entries of

146 Lab 14. The Simplex Method

the index list, have values given by the first column of the tableau. Specifically, the
basic variable whose index is located at the ith entry of the index list has the value
T
i+1,1

.

In our example, suppose that our algorithm terminates with the tableau and
index list in the following state:

T =

2

6

6

4

5.2 0 0 0 .2 .6 1
.6 0 0 1 �1.4 .8 0
1.6 1 0 0 .6 �.2 0
.2 0 1 0 �.8 .6 0

3

7

7

5

L = (2, 0, 1, 3, 4).

Then the maximum value of the objective function is 5.2. The nonbasic variables
have indices 3, 4 and have the value 0. The basic variables have indices 2, 0, and 1,
and have values .6, 1.6, and .2, respectively. In the notation of the original problem
statement, the solution is given by

x
0

= 1.6

x
1

= .2.

Problem 6. Write an additional method in your solver called solve() that
obtains the optimal solution, then returns the maximum value, the basic vari-
ables, and the nonbasic variables. The basic and nonbasic variables should
be represented as two dictionaries that map the index of the variable to its
corresponding value.

For our example, we would return the tuple (5.2, {0: 1.6, 1: .2, 2: .6},

{3: 0, 4: 0}).

At this point, you should have a Simplex solver that is simple to use. The
following code demonstrates how your solver is expected to behave:

>>> import SimplexSolver

Initialize objective function and constraints.

>>> c = np.array([3., 2])

>>> b = np.array([2., 5, 7])

>>> A = np.array([[1., -1], [3, 1], [4, 3]])

Instantiate the simplex solver, then solve the problem.

>>> solver = SimplexSolver(c, A, b)

>>> sol = solver.solve()

>>> print(sol)

(5.200,

{0: 1.600, 1: 0.200, 2: 0.600},

{3: 0, 4: 0})

If the linear program were infeasible at the origin or unbounded, we would expect
the solver to alert the user by raising an error.

147

Note that this simplex solver is not fully operational. It can’t handle the case
of infeasibility at the origin. This can be fixed by adding methods to your class
that solve the auxiliary problem, that of finding an initial feasible tableau when
the problem is not feasible at the origin. Solving the auxiliary problem involves
pivoting operations identical to those you have already implemented, so adding this
functionality is not overly di�cult.

The Product Mix Problem

We now use our Simplex implementation to solve the product mix problem, which
in its basic form can be expressed as a simple linear program. Suppose that a
manufacturer makes n products using m di↵erent resources (labor, raw materials,
machine time available, etc). The ith product is sold at a unit price p

i

, and there
are at most m

j

units of the jth resource available. Additionally, each unit of the
ith product requires a

j,i

units of resource j. Given that the demand for product i
is d

i

units per a certain time period, how do we choose the optimal amount of each
product to manufacture in that time period so as to maximize revenue, while not
exceeding the available resources?

Let x
1

, x
2

, . . . , x
n

denote the amount of each product to be manufactured. The
sale of product i brings revenue in the amount of p

i

x
i

. Therefore our objective
function, the profit, is given by

n

X

i=1

p
i

x
i

.

Additionally, the manufacture of product i requires a
j,i

x
i

units of resource j. Thus
we have the resource constraints

n

X

i=1

a
j,i

x
i

 m
j

for j = 1, 2, . . . ,m.

Finally, we have the demand constraints which tell us not to exceed the demand
for the products:

x
i

 d
i

for i = 1, 2, . . . , n

The variables x
i

are constrained to be nonnegative, of course. We therefore have
a linear program in the appropriate form that is feasible at the origin. It is a simple
task to solve the problem using our Simplex solver.

Problem 7. Solve the product mix problem for the data contained in the
file productMix.npz. In this problem, there are 4 products and 3 resources.
The archive file, which you can load using the function np.load, contains a
dictionary of arrays. The array with key 'A' gives the resource coe�cients
a
i,j

(i.e. the (i, j)-th entry of the array give a
i,j

). The array with key 'p'
gives the unit prices p

i

. The array with key 'm' gives the available resource
units m

j

. The array with key 'd' gives the demand constraints d
i

.

Report the number of units that should be produced for each product.

148 Lab 14. The Simplex Method

Beyond Simplex

The Computing in Science and Engineering journal listed Simplex as one of the
top ten algorithms of the twentieth century [Nash2000]. However, like any other
algorithm, Simplex has its drawbacks.

In 1972, Victor Klee and George Minty Cube published a paper with several
examples of worst-case polytopes for the Simplex algorithm [Klee1972]. In their
paper, they give several examples of polytopes that the Simplex algorithm struggles
to solve.

Consider the following linear program from Klee and Minty.

max 2n�1x
1

+2n�2x
2

+ · · · +2x
n�1

+x
n

subject to x
1

 5

4x
1

+x
2

 25

8x
1

+4x
2

+x
3

 125

...
...

2nx
1

+2n�1x
2

+ · · · +4x
n�1

+x
n

 5

Klee and Minty show that for this example, the worst case scenario has ex-
ponential time complexity. With only n constraints and n variables, the simplex
algorithm goes through 2n iterations. This is because there are 2n extreme points,
and when starting at the point x = 0, the simplex algorithm goes through all of the
extreme points before reaching the optimal point (0, 0, . . . , 0, 5n). Other algorithms,
such as interior point methods, solve this problem much faster because they are not
constrained to follow the edges.

