
Lab 16

1-D Optimization

Lab Objective: Many high-dimensional optimization algorithms rely on one-
dimensional optimization methods. In this lab, we implement four line search algo-
rithms for optimizing scalar-valued functions defined on R. We will generalize some
of these approaches to high-dimensional optimization problems in subsequent labs.

Overview of Line Search Algorithms

Imagine you are hiking a steep mountain. When it is time to head home, thick fog
gathers around, reducing visibility to just a couple of feet. How can you find your
way back with such limited visibility? One strategy is to pick a downhill direction
and follow that direction as far as you can, or until it starts leading upward again.
Then choose another downhill direction, and take that as far as you can, repeating
the process. By always choosing a downhill direction, you hope to eventually make
it back to the base of the mountain.

This is the basic approach of line search algorithms for numerical optimization.
Let f be a scalar-valued function. The goal is to find the global minimizer x⇤ such
that f(x⇤)  f(x) for all x in the domain of f . After choosing an initial guess x

0

,
we produce a sequence of approximations x

1

, x
2

, x
3

, . . . using the rule

x
k+1

= x
k

+ ↵
k

p
k

. (16.1)

The point p
k

is the search direction (which way to go) and the scalar ↵
k

is called
the step size (how far to go). The choice of search direction and step size at each
step is what defines di↵erent line search algorithms.

Derivative versus Derivative-Free Methods

A function’s derivative provides information about how the value of the function
changes at each point, and can be used to determine local optima. Unfortunately,
not all objective functions are di↵erentiable, and many are di�cult or costly to
di↵erentiate. Thus some line search methods utilize the derivative of the objective
function, but others do not.

157

158 Lab 16. 1-D Optimization

Interval Approximation Methods for Unimodal Functions

A function f : [a, b] ! R satisfies the unimodal property if it has just one local
(hence global) minimum and is monotonic to the left and right of the minimum.
The following line search methods optimize a unimodal function by partitioning the
function’s domain into progressively smaller intervals that contain the minimizer.

Golden Section Search

Let f : [a, b] ! R be unimodal. Starting with the closed interval [a, b], the golden
section search finds a smaller interval that contains x⇤ as follows.

Choose two points a0 and b0 with a0 < b0. If f(a0) � f(b0), the unimodal
property guarantees that the minimizer must be in the interval [a0, b], for otherwise
the function f would have a local minimum in both [a, a0] and [a0, b]. In the next
step, we repeat the process over the interval [a0, b]. If instead f(a0)  f(b0), then
we choose the interval [a, b0] for the next step. Finally, if f(a0) = f(b0), then it does
not matter which interval is chosen.

It turns out that there is an optimal choice for the two test points a0 and b0.
Given the current interval [a, b], choose a0 and b0 satisfying

a0 = a+ ⇢(b� a)

b0 = a+ (1� ⇢)(b� a),

where ⇢ = 1

2

(3 �
p
5) ⇡ 0.382 (this constant is related to the famous golden ratio,

hence the name of the algorithm).

At each step, the interval is reduced by a factor of 1 � ⇢, which means that
after n steps, the minimizer is pinned down to within an interval approximately
(0.618)n times the length of the original interval. Note that this rate of convergence
is independent of the objective function.

Problem 1. Write a function that accepts a callable function f , interval
limits a and b, and a number of iterations niter to calculate. Implement the
golden section search as described above, returning the midpoint of the final
interval.

Use your function to minimize f(x) = ex � 4x on the interval [0, 3]. How
many steps do you need to take to get within .001 of the true minimizer?

Bisection Algorithm

This method is similar to the Golden Ratio method, but instead of cutting our
interval into two overlapping sections, we divide the interval evenly in half, and
then use the derivative f 0(x) to determine where the minimizer lies. This method
takes advantage of the fact that a unimodal function’s derivative is strictly less than
0 to the left of the minimizer, and strictly greater than 0 to the right.

For a unimodal function f : [a, b] ! R, take the midpoint, x
1

= b+a

2

. If
f 0(x

1

) > 0, the critical point must lie in the interval [a, x
1

]; otherwise, the critical

159

point lies in the other half of the interval, [x
1

, b]. We repeat this process on the
correct interval until the desired accuracy is achieved.

At each step, the interval is reduced by a factor of two. This is slightly quicker
than the factor of 1�⇢ in the Golden Section search method. Like the golden section
search, the convergence of this method is independent of the objective function.

Problem 2. Write a function that accepts a callable function f , interval
limits a and b, and a number of iterations niter to calculate. Implement the
bisection algorithm as described above, returning the midpoint of the final
interval.

Use your function to minimize the same objective function as in Problem
1. How many steps do you need to take to get within .001 of the true
minimizer? Time both algorithms and report which one is faster to converge.

Newton’s Method and Quasi-Newton Methods

Newton’s Method, is a basic line search algorithm that uses the derivatives of the
function to select a direction and step size.

To use this method, we need a function that is twice di↵erentiable. The idea is
to approximate the function with a quadratic polynomial and then solve the trivial
problem of minimizing the polynomial. Doing so in an iterative manner can lead us
to the actual minimizer. Let f be a function satisfying the appropriate conditions,
and let us make an initial guess, x

0

. The relevant quadratic approximation to f at
x
0

is

q(x) = f(x
0

) + f 0(x
0

)(x� x
0

) +
1

2
f 00(x

0

)(x� x
0

)2,

which is the second-degree Taylor polynomial for f centered at x
0

. The minimum for
this quadratic function is easily found by solving q0(x) = 0, and we take the obtained
x-value as our new approximation. The formula for the (k + 1)-th approximation,
which the reader can verify, is

x
k+1

= x
k

� f 0(x
k

)

f 00(x
k

)
.

In the one dimensional case, there are only two search directions: to the right (+) or
to the left (�). Newton’s method chooses the search direction p

k

= sign(�f 0(x
k

)/f 00(x
k

))
and the step size ↵

k

= |f 0(x
k

)/f 00(x
k

)|.
The convergence properties of this sequence depend heavily on the initial guess

x
0

and the function f . Roughly speaking, if x
0

is su�ciently close to the actual
minimizer, and if f is well-approximated by parabolas, then one can expect the
sequence to converge quickly. However, there are cases when the sequence converges
slowly or not at all. See Figure 16.1.

160 Lab 16. 1-D Optimization

Figure 16.1: The results of Newton’s Method using two di↵erent initial guesses.
The global minimizer was correctly found with initial guess of 1. However, an
initial guess of 4 led to only a local minimum.

Problem 3. Implement Newton’s Method. You will write a function that
takes a function and its two derivatives, as well as a starting point. It will
return the minimizer.

Use this function to minimize f(x) = x2+sin(5x) with an initial guess of
x
0

= 0. Now try other initial guesses farther away from the true minimizer,
and note when the method fails to obtain the correct answer.

One-Dimensional Secant Method

Sometimes we would like to use Newton’s Method, but for whatever reason we don’t
have a second derivative. Maybe calculating it is too costly or the function is not
twice di↵erentiable. In this situation we can approximate the second derivative
using the first derivative. The approximation using a secant calculation, hence
the name. We use the same basic algorithm as in Newton’s Method, but with an
approximation for the second derivative of the objective function.

x
n+1

= x
n

� f 0(x
n

)

f 00
approx

(x
n

)
,

where we approximate the second derivative as follows:

f 00
approx

(x
n

) =
f 0(x

n

)� f 0(x
n�1

)

x
n

� x
n�1

.

This gives us the final equation:

x
n+1

= x
n

� x
n

� x
n�1

f 0(x
n

)� f 0(x
n�1

)
f 0(x

n

),

161

Notice that this equation requires two initial points (both x
n

and x
n�1

) to calculate
the next estimate.

Problem 4. Write a function that accepts a scalar-valued function f , its
first derivative Df , and two starting points. Use the secant method to find
and return the minimizer of f .

Use your function to minimize f(x) = x2 + sin(x) + sin(10x) with initial
guesses of x

0

= 0 and x
1

= �1. Now try other initial guesses farther away
from the true minimizer, and note when the method fails to obtain the correct
answer.

(Hint: You may want to plot this function to understand why this prob-
lem is so sensitive to the starting point.)

General Line Search Methods

Step Size Calculation

Given a di↵erentiable function f : Rn ! R that we wish to minimize, and assuming
that we already have a current point x

k

and direction p
k

in which to search, how
do we choose our step size ↵

k

? If our step size is too small, we will not make good
progress toward the minimizer, and convergence will be slow. If the step size is too
large, however, we may overshoot and produce points that are far away from the
solution. A common approach to pick an appropriate step size involves the Wolfe
conditions :

f(x
k

+ ↵
k

p
k

)  f(x
k

) + c
1

↵
k

rf(x
k

)Tp
k

, (0 < c
1

< 1),

rf(x
k

+ ↵
k

p
k

)Tp
k

� c
2

rf(x
k

)Tp
k

, (c
1

< c
2

< 1).

The search direction p
k

is often required to satisfy pT
k

rf(x
k

) < 0, in which case
it is called a descent direction, since the function is guaranteed to decrease in this
direction. Generally speaking, choosing a step size ↵

k

satisfying these conditions
ensures that we achieve su�cient decrease in the function and also that we do not
terminate the search at a point of steep decrease (since then we could achieve even
better results by choosing a slightly larger step size). The first condition is known
as the Armijo condition.

We will discuss methods of finding search directions in future labs. For now, we
will discuss one simple algorithm for finding an appropriate step size which satisfies
the Armijo conditions.

Backtracking

Finding such a step size satisfying these conditions is not always an easy task,
however. One simple approach, known as backtracking, starts with an initial step

162 Lab 16. 1-D Optimization

size ↵, and repeatedly scales it down until the Armijo condition is satisfied. That
is, choose ↵ > 0, ⇢ 2 (0, 1), c 2 (0, 1), and while

f(x
k

+ ↵p
k

) > f(x
k

) + c↵rf(x
k

)Tp
k

,

re-scale ↵ = ⇢↵. Once the loop terminates, set ↵
k

= ↵. Note that the value
rf(x

k

)Tp
k

remains fixed for the duration of the backtracking algorithm, and hence
need only be calculated once at the beginning.

Problem 5. Implement this backtracking algorithm using the function def-
inition in the spec file. Your function will accept a function, its derivative, a
starting point, and the direction p.

Line Search in SciPy

SciPy’s optimize module contains implementations of various optimization algo-
rithms, including several line search methods. In particular, the module provides
a useful routine for calculating a step size satisfying the Wolfe Conditions de-
scribed above, which is more robust and e�cient than our simple backtracking
approach. We recommend its use for the remainder of this lab. The function is
called line_search(), and accepts several arguments. We can typically leave the key-
word arguments at their default values, but we do need to pass in the objective
function, its gradient, the current point, and the search direction. The following
code gives an example of its usage, using the objective function f(x, y) = x2 + 4y2.

>>> import numpy as np

>>> from scipy.optimize import line_search

>>>

>>> def objective(x):

>>> return x[0]**2 + 4*x[1]**2

>>>

>>> def grad(x):

>>> return np.array([2*x[0], 8*x[1]])

>>>

>>> x = np.array([1., 3.]) # current point

>>> p = -grad(x) # current search direction

>>> a = line_search(objective, grad, x, p)[0]

>>> print a

0.125649913345

Note that the function returns a tuple of values, the first of which is the step
size.

