
Lab 17

Newton and
Quasi-Newton Methods

Lab Objective: Newton’s method is generally useful because of its fast conver-
gence properties. However, Newton’s method requires the explicit calculation of the
second derivative (i.e., the Hessian matrix) at each step, which is computationally
costly. Quasi-Newton methods modify Newton’s method so that the Hessian does not
have to be computed at each step, thus making computations faster. This generally
comes at the cost of slower convergence speed, but the increased computation speed
can make these methods more e↵ective in many cases.

Newton’s Method

At this point, we have discussed Newton’s Method several times. In the n dimen-
sional version, the next step is given by:

x
k+1 = x

k

�D2f(x
k

)�1Df(x
k

)T (17.1)

Problem 1. Write code implementing Newton’s method in n Dimensions.
Ensure that it takes its Jacobian, and Hessian as arguments and returns the
minimizer. Test it on the Rosenbrock function:

f(x, y) = 100(y � x2)2 + (1� x)2

using two di↵erent starting points (�2, 2) and (10,�10).

Broyden’s Method

One quasi-Newton method is known as Broyden’s method. Broyden’s Method is a
multidimensional version of the secant method we have discussed previously. Just
like the secant method approximates the second derivative of a function by using the
first derivatives at nearby points, Broyden’s Method uses the Jacobian to update
an initial Hessian matrix.

163

164 Lab 17. Newton and Quasi-Newton Methods

Broyden’s Method in n Dimensions

If we have the point x
k

and the Hessian D2f(x
k

) at that point, we can use the
following equation to select our guess for the zero of the function:

x
k+1 = x

k

�D2f(x
k

)�1Df(x
k

)T . (17.2)

This is precisely Newton’s method. However, since calculating the Hessian at each
step is costly, we instead estimate the Hessian (just as we used a secant line to
approximate the derivative in the one-dimensional case).

The idea is to construct the best rank-one approximation of the Hessian at each
iteration. This approximation, denoted A

k+1, must satisfy

Df(x
k+1)�Df(x

k

) = (x
k+1 � x

k

)TA
k+1. (17.3)

In multiple dimensions, this equation will be underdetermined (i.e., many A
k+1’s

will satisfy the equation). Suppose that we have a previous estimate of the Hessian
A

k

at the point x
k

(note that for the first iteration, we plug in the starting point to
the Hessian as our first approximation). We can then find the best approximation
of A

k+1 that minimizes kA
k+1�A

k

k. If we define y
k

= Df(x
k+1)T �Df(x

k

)T and
s
k

= x
k+1 � x

k

, this requirement is uniquely fulfilled by the following:

A
k+1 = A

k

+
y
k

�A
k

s
k

ks
k

k2 sT
k

. (17.4)

After we have obtained the approximation of the Hessian (Equation 17.4), we
can apply Equation 17.2 to find x

k+1. We can then repeat this process until we
have (presumably) converged to a zero of the function.

Problem 2. Write code implementing Broyden’s method. Test it on the
function:

f(x, y) = ex�1 + e1�y + (x� y)2

using starting points (2, 3) and (3, 2).

Note

We can often make Broyden’s method faster using the Sherman-Morrison-
Woodbury Formula. This formula allows us to e�ciently calculate the inverse
of a matrix when we add a low rank update to that matrix. After manipulation
of the Sherman-Morrison-Woodbury Formula, we obtain the following:

A�1
k+1 = A�1

k

+
s
k

�A�1
k

y
k

sT
k

A�1
k

y
k

(sT
k

A�1
k

)

Thus, we can calculate the inverse of the Hessian in the first step of our

165

algorithm and then calculate an update to the inverse at each step using the
above formula.

BFGS

To be a descent method, we need a monotonically decreasing sequence of functions.
In other words, f(x

k

) < f(x
k�1). However, if the Hessian or the approximated Hes-

sian is not positive definite, we cannot expect that f(x
k

) < f(x
k�1). A drawback

of Broyden’s method is that the Hessian approximations are not always positive
definite, even if D2f(x

k

) > 0. The Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method is an adjustment to Broyden’s method that maintains a positive-definite
Hessian approximation. To do this, it makes a rank-two approximation instead of a
rank-one approximation. It uses the same update of x

k

as Broyden’s method, but
with a di↵erent update of A

k

:

A
k+1 = A

k

+
y
k

yT

k

yT

k

s
k

� A
k

s
k

sT
k

A
k

sT
k

A
k

s
k

(17.5)

where y
k

and s
k

have the same definitions as given above.

Problem 3. Implement the BFGS method in a new function. Your function
should take in the Jacobian, the Hessian, a starting point, a number of itera-
tions, and a stopping tolerance, and return the approximated root along with
the number of iterations it took. Test your implementation with the same
function given in Problem 2. Experiment with di↵erent starting points. Is
BFGS faster than Broyden’s method? Are there cases (i.e., di↵erent starting
points or varying number of iterations) where one implementation is better
than the other?

Comparing Newton and Quasi-Newton Methods

Di↵erent optimization algorithms are more e�cient in di↵erent situations. If the
Jacobian and Hessian are readily available and the Hessian is easily inverted, the
standard Newton’s Method is probably the best option. If the Hessian is not avail-
able or di�cult to compute, then using Broyden’s Method may be a better option.
In circumstances where computing the inverse of the Hessian is di�cult, BFGS will
allow us to update the inverted Hessian at each step without repeatedly inverting
a matrix.

Problem 4. Compare the performance of Newton, Broyden, and BFGS on
the following functions:

f(x, y) = 0.26(x2 + y2)� 0.48xy

166 Lab 17. Newton and Quasi-Newton Methods

f(x, y) = sin(x+ y) + (x� y)2 � 1.5x+ 2.5y + 1

Output the number of iterations of each algorithm as well as the total time
each algorithm takes to run. Calculate the time per iteration for each algo-
rithm and compare. You should see that Newton’s Method takes more time
per iteration, but that is takes fewer steps than the other algorithms.

The Gauss-Newton Method

Non-linear Least Squares Problems

We now discuss a very important class of problems known as Least Squares prob-
lems. These are unconstrained optimization problems that seek to minimize an
objective function of the form

f(x) =
1

2

mX

j=1

r2
j

(x),

where each r
i

: Rn ! R is smooth, and m � n. Such problems arise in many
scientific fields, including economics, physics, and statistics. Linear Least Squares
problems form an important subclass, and can be solved directly without the need
for an iterative method. At present we will focus on the non-linear case, which can
be solved with a line search method.

To motivate the problem further, suppose you are given a set of data points, and
you have some kind of model for the data. You need to choose particular values for
the parameters in your model, and you wish to do so in a way that “best fits” the
observed data. What do we mean by “best fit”? We need some way to measure the
error between our model and the data set, and then minimize this error. The best
fit will correspond to the choice of parameters that minimize the error function.

More formally, suppose we are given the data points (t1, y1), (t2, y2), . . . , (tm, y
m

),
where y

i

, t
i

2 R for i = 1, . . . ,m. Let �(x, t) be our model for this data set, where
x is a vector of parameters of the model, and t 2 Rn. We can measure the error at
the i-th data point by the value

r
i

(x) := �(x
i

, t
i

)� y
i

,

and by summing the squares of these errors, we obtain our non-linear least squares
objective function:

f(x) =
1

2

mX

j=1

r2
j

(x).

The individual functions r
i

that measure the error between the model and the
data point are known as residuals, and we can aggregate these functions into a
residual vector

r(x) := (r1(x), r2(x), . . . , rm(x))T .

167

The Jacobian of r(x) can be expressed in terms of the gradients of each r
i

as follows:

J(x) =

2

6664

rr1(x)T

rr2(x)T

...
rr

m

(x)T

3

7775

You can further verify that

rf(x) = J(x)T r(x),

r2f(x) = J(x)TJ(x) +
mX

j=1

r
j

(x)r2r
j

(x).

That second term in the formula for r2f involves second derivatives and can be
problematic to compute. Often in practice, this term is small, either because the
residuals themselves are small, or are nearly a�ne in a neighborhood of the solution
and hence the second derivatives are small. The simplest method for solving the
nonlinear least squares problem, known as the Gauss-Newton Method, exploits this
observation, simply ignoring the second term and making the approximation

r2f(x) ⇡ J(x)TJ(x).

The method then proceeds in a manner similar to Newton’s Method. In particular,
at the k-th iteration, we choose a search direction p

k

that solves the linear system

JT

k

J
k

p
k

= �JT

k

r
k

.

Thus, at each iteration, we find x
k+1 as follows:

x
k+1 = x

k

� (J(x
k

)TJ(x
k

))�1J(x
k

)T r(x
k

). (17.6)

Problem 5. Implement the Gauss-Newton Method. Your function should
take the gradient of the objective function Df , the residual vector r, and the
Jacobian of the residual vector J . Return the minimizer.

Test your function by using optimize.leastsq and comparing your mini-
mizer with Scipy’s minimizer. Use the Jacobian function, residual function,
and starting point given in the example below.

Let us work through an example of a nonlinear least squares problem. Sup-
pose we have data points generated from a sine function and slightly perturbed by
gaussian noise. In Python we can generate such data as follows:

>>> t = np.arange(10)

>>> y = 3*np.sin(0.5*t)+ 0.5*np.random.randn(10)

Now we write Python functions for our model, the residual vector, the Jacobian, the
objective function, and the gradient. The calculations for all of these are straight
forward.

168 Lab 17. Newton and Quasi-Newton Methods

>>> def model(x, t):

>>> return x[0]*np.sin(x[1]*t)

>>> def residual(x):

>>> return model(x, t) - y

>>> def jac(x):

>>> ans = np.empty((10,2))

>>> ans[:,0] = np.sin(x[1]*t)

>>> ans[:,1] = x[0]*t*np.cos(x[1]*t)

>>> return ans

>>> def objective(x):

>>> return .5*(residual(x)**2).sum()

>>> def grad(x):

>>> return jac(x).T.dot(residual(x))

By inspecting our data, we might make an initial guess for the parameters x0 =
(2.5, 0.6). We are now ready to use our gaussNewton function to find the least squares
solution.

>>> x0 = np.array([2.5,.6])

>>> x = gaussNewton(jac, residual, x0, niter=10)

We can plot everything together to compare our fitted model with the data and the
original sine curve from which the data were generated.

dom = np.linspace(0,10,100)

plt.plot(t, y, '*')
plt.plot(dom, 3*np.sin(.5*dom), '--')
plt.plot(dom, x[0]*np.sin(x[1]*dom))

plt.show()

Non-linear Least Squares in Python

The module scipy.optimize also has a method to solve non-linear least squares prob-
lem, and it is quite convenient. The function is called leastsq, and in its most basic
use, you only need to pass in the residual function and starting point as arguments.
In the example above, we simply need to execute the following code:

>>> from scipy.optimize import leastsq

>>> x2 = leastsq(residual, x0)[0]

This should give us the same answer, but much faster.

Problem 6. We have census data giving the population of the United States
every ten years since 1790. For convenience, we have entered the data in
Python below, so that you may simply copy and paste.

>>> #Start with the first 8 decades of data

>>> years1 = np.arange(8)

>>> pop1 = np.array([3.929, 5.308, 7.240, 9.638, 12.866,

>>> 17.069, 23.192, 31.443])

>>>

>>> #Now consider the first 16 decades

169

>>> years2 = np.arange(16)

>>> pop2 = np.array([3.929, 5.308, 7.240, 9.638, 12.866,

>>> 17.069, 23.192, 31.443, 38.558, 50.156,

>>> 62.948, 75.996, 91.972, 105.711, 122.775,

>>> 131.669])

Consider just the first 8 decades of population data. By plotting the data
and having an inclination that population growth tends to be exponential, it
is reasonable to hypothesize an exponential model for the population, that
is,

�(x1, x2, x3, t) = x1 exp(x2(t+ x3)).

By inspection, find a reasonable initial guess for the parameters (x1, x2, x3)
(i.e. (150, .4, 2.5)). Write a function for this model in Python, along with the
corresponding residual vector, and fit the model using the leastsq function.
Plot the data against the fitted curve, to see how close you are.

Now consider all 16 decades of data. If you plot your curve from above
with this more complete data, you will see that the model is no longer a
good fit. Instead, the data suggest a logistic model, which also arises from a
di↵erential equations treatment of population growth. Thus, your new model
is

�(x1, x2, x3, t) =
x1

1 + exp(�x2(t+ x3))
.

By inspection, find a reasonable initial guess for the parameters (x1, x2, x3)
(i.e. (150, .4,�15)). Again, write Python functions for the model and the
corresponding residual vector, and fit the model. Plot the data against the
fitted curve. It should be a good fit.

