
Lab 18

Gradient Descent
Methods

Lab Objective: Many optimization methods fall under the umbrella of descent
algorithms. The idea is to choose an initial guess, identify a direction from this
point along with the objective function decreases, and preform a line search to find
a new point where the objective function is smaller than at the initial guess.

In this lab, we implement two major descent algorithms: the method of steepest
descent, which uses the gradient of the objective function as the descent direction,
and the conjugate gradient algorithm, which uses a conjugate basis as the descent
directions. We then apply these techniques to linear and logistic regression problems.

The Method of Steepest Descent

Recall the basic idea of a line search algorithm to optimize: at the kth iteration,
choose a search direction p

k

and a step size ↵
k

, then compute x
k+1

= x
k

+ ↵
k

p
k

.
If f : Rn ! R is a scalar-valued function, its gradient rf : Rn ! Rn points in
the direction of steepest increase of f . It follows that the opposite direction is the
direction of steepest decrease, or descent.

The method of steepest descent is a line search method that uses p
k

= �rf(x
k

)
as the search direction. A simple version of the method chooses the step size as
follows:

1. At the kth iteration, start with a step size of ↵ = 1.

2. Check that f(x
k

� ↵rf(x
k

)) < f(x
k

) (i.e. check that the function decreases
in the search direction), and if it does, set x

k+1

= x
k

� ↵rf(x
k

).

3. If the function does not decrease, set ↵ = ↵

2

and check the search direction
again. Repeat this step until the function decreases in the search direction.

4. If ↵ is scaled below a given tolerance, terminate the iteration.

171

172 Lab 18. Gradient Descent Methods

Problem 1. Write a function that accepts a convex objective function f :
Rn ! R, its derivative Df : Rn ! Rn, an initial guess x

0

2 Rn, a con-
vergence tolerance, and a maximum number of iterations. Use the Method
of Steepest Descent to compute the minimizer of f . Continue the algorithm
until ↵ is less than the convergence tolerance, or until iterating the maximum
number of times. Return the minimizer.

The Conjugate-Gradient Method

Unfortunately, the method of steepest descent can be very ine�cient for certain
problems: depending on the geometry of the objective function, the sequence of
points can “zig-zag” back and forth without making significant progress toward the
true minimizer. In contrast, the Conjugate-Gradient algorithm ensures that the true
global minimizer is reached in at most n steps. See Figure 18.1 for an illustration
of this contrast.

There are many methods for solving the linear system of equations Ax = b, each
with its own pros and cons. The Conjugate-Gradient algorithm is one such method
for solving large systems of equations where other methods, such as Cholesky fac-
torization and simple Gaussian elimination, are unsuitable. However, the algorithm
works equally well for optimizing convex quadratic functions, and it can even be
extended to more general classes of optimization problems.

The type of linear system that Conjugate-Gradient can solve involves a matrix
with special structure. Given a symmetric positive-definite n⇥ n matrix Q and an
n-vector b, we wish to find the n-vector x satisfying

Qx = b.

A unique solution exists because positive-definiteness implies invertibility. For our
purposes here, it is useful to recast this problem as an equivalent optimization
problem:

min
x

f(x) :=
1

2
xTQx� bTx+ c.

Note that rf(x) = Qx�b, so that minimizing f is the same as solving the equation

0 = rf(x) = Qx� b,

which is the original linear system.

Conjugacy

Unlike the method of steepest descent, the conjugate gradient algorithm chooses a
search direction based o↵ of the matrix Q that is guaranteed to be a direction of
descent, though not the direction of greatest descent.

Two vectors x,y 2 Rn are said to be conjugate with respect to Q if xTQy = 0.
A set of vectors {x

0

,x
1

, . . . ,x
m

} is said to be conjugate if each pair of vectors
are conjugate to each other. Note that if Q = I, then conjugacy is the same as

173

Figure 18.1: Paths traced by Steepest Descent (blue) and Conjugate-Gradient
(green). Notice the zig-zagging nature of the Steepest Descent path, as opposed
to the direct Conjugate-Gradient path, which finds the minimizer in 2 steps.

orthogonality. Thus, the notion of conjugacy is in some ways a generalization of
orthogonality. It turns out that a conjugate set of vectors is linearly independent,
and a conjugate basis–which can be constructed in a manner analogous to the
Gram-Schmidt orthogonalization process–can be used to diagonalize the matrix Q.
These are some of the theoretical reasons behind the e↵ectiveness of the Conjugate-
Gradient algorithm.

The Algorithm

If we are given a set of n Q-conjugate vectors, we can simply choose these as
our direction vectors and follow the basic descent algorithm. Convergence to the
minimizer in at most n steps is guaranteed because each iteration in the algorithm
minimizes the objective function over an expanding a�ne subspace of dimension
equal to the iteration number. Thus, at the n-th iteration, we have minimized the
function over all of Rn.

Unfortunately, we are not often given a set of conjugate vectors in advance, so
how do we produce such a set? As mentioned earlier, a Gram-Schmidt process
could be used, and the set of eigenvectors also works, but both of these options are
computationally expensive. Built into the algorithm is a way to determine a new
conjugate direction based only on the previous direction, which means less memory
usage and faster computation. We have stated the details of Conjugate-Gradient in
Algorithm 18.1.

Note that the points x
i

are the successive approximations to the minimizer, the
vectors d

i

are the conjugate descent directions, and the vectors r
i

, which actually
correspond to the steepest descent directions, are used in determining the conjugate
directions. The constants ↵

i

and �
i

are used, respectively, in the line search, and

174 Lab 18. Gradient Descent Methods

Algorithm 18.1 Conjugate-Gradient Algorithm

1: procedure Conjugate-Gradient Algorithm

2: Choose initial point x
0

.
3: r

0

 Qx
0

� b, d
0

 �r
0

, k 0.
4: while r

k

6= 0 do

5: ↵
k

 r

T
k rk

d

T
k Qdk

.

6: x
k+1

 x
k

+ ↵
k

d
k

.
7: r

k+1

 r
k

+ ↵
k

Qd
k

.

8: �
k+1

 r

T
k+1rk+1

r

T
k rk

.

9: d
k+1

 �r
k+1

+ �
k+1

d
k

.
10: k k + 1.

in ensuring the Q-conjugacy of the descent directions.

The most numerically expensive computation in the algorithm is matrix-vector
multiplication. Notice, however, that each iteration of the algorithm only requires
one distinct matrix-vector multiplication, Qd

k

. The rest of the operations are simply
vector-vector multiplication, addition, and scalar multiplication. This makes for a
very fast algorithm. As noted earlier, Conjugate-Gradient is especially preferred
when Q is large and sparse. In this case, it may be possible to design a specialized
sub-routine that performs matrix-vector multiplication by Q, by taking advantage
of its sparseness. Doing so may lead to further speed-ups in the overall algorithm.

We now have an algorithm that can solve certain n⇥n linear systems and mini-
mize quadratic functions on Rn in at most n steps, and sometimes fewer, depending
on the spectrum of the matrix Q. Further improvements on convergence may be
obtained by preconditioning the matrix, but we do not go into detail here.

Problem 2. Implement the basic Conjugate-Gradient algorithm presented
above. Write a function conjugateGradient() that accepts a vector b, an initial
guess x

0

, a symmetric positive-definite matrix Q, and a default tolerance of
.0001 as inputs. Continue the algorithm until kr

k

k is less than the tolerance.
Return the solution x⇤ to the linear system Qx = b.

Example

We now work through an example that demonstrates the usage of the Conjugate-
Gradient algorithm. We assume that we have already written the specified function
in the above problem.

We must first generate a symmetric positive-definite matrix Q. This can be
done by generating a random matrix A and setting Q = ATA. So long as A is of
full column rank, the matrix Q will be symmetric positive-definite.

>>> import numpy as np

>>> from scipy import linalg as la

>>> # initialize the desired dimension of the space

175

>>> n = 10

>>> # generate Q, b

>>> A = np.random.random((n,n))

>>> Q = A.T.dot(A)

>>> b = np.random.random(n)

At this point, check to make sure thatQ is nonsingular by examining its determinant
(use scipy.linalg.det()). Provided that the determinant is nonzero, we proceed by
writing a function that performs matrix-vector multiplication by Q (we will not take
advantage of sparseness just now), randomly selecting a starting point (Conjugate-
Gradient is not sensitive to the location of the starting point), obtaining the answer
using our function, and checking it with the answer obtained by scipy.linalg.solve().

>>> # generate random starting point

>>> x0 = np.random.random(n)

>>> # find the solution

>>> x = conjugateGradient(b, x0, mult)

>>> # compare to the answer obtained by SciPy

>>> print np.allclose(x, la.solve(Q,b))

The output of the print statement should be True.

Time the performance of your algorithm and of scipy.linalg.solve() on inputs
of size 100.

Application: Least Squares and Linear Regression

The Conjugate-Gradient method can be used to solve linear least squares problems,
which are ubiquitous in applied science. Recall that a least squares problem can be
formulated as an optimization problem:

min
x

kAx� bk
2

,

where A is an m ⇥ n matrix with full column rank, x 2 Rn, and b 2 Rm. The
solution can be calculated analytically, and is given by

x⇤ = (ATA)�1AT b,

or in other words, the minimizer solves the linear system

ATAx = AT b.

Since A has full column rank, we know that ATA is an n ⇥ n matrix of rank n,
which means it is invertible. We can therefore conclude that ATA is symmetric
positive-definite, so we may use Conjugate-Gradient to solve the linear system and
obtain the least squares solution.

Linear least squares is the mathematical underpinning of linear regression, which
is a very common technique in many scientific fields. In a typical linear regression
problem, we have a set of real-valued data points {y

1

, . . . , y
m

}, where each y
i

is

176 Lab 18. Gradient Descent Methods

paired with a corresponding set of predictor variables {x
i,1

, x
i,2

, . . . , x
i,n

} with n <
m. The linear regression model posits that

y
i

= �
0

+ �
1

x
i,1

+ �
2

x
i,2

+ · · ·+ �
n

x
i,n

+ ✏
i

for i = 1, 2, . . . ,m. The real numbers �
0

, . . . ,�
n

are known as the parameters of
the model, and the ✏

i

are independent normally-distributed error terms. Our task
is to calculate the parameters that best fit the data. This can be accomplished by
posing the problem in terms of linear least squares: Define

b = [y
1

, . . . , y
m

]T ,

A =

2

6

6

6

4

1 x
1,1

x
1,2

· · · x
1,n

1 x
2,1

x
2,2

· · · x
2,n

...
...

...
. . .

...
1 x

m,1

x
m,2

· · · x
m,n

3

7

7

7

5

,

and
x = [�

0

,�
1

, . . . ,�
n

]T .

Now use Conjugate-Gradient to solve the system

ATAx = AT b.

The solution x⇤ = [�⇤
0

,�⇤
1

, . . . ,�⇤
n

]T gives the parameters that best fit the data.
These values can be understood as defining the hyperplane that best fits the data.
See Figure 18.2.

Problem 3. Using your Conjugate-Gradient function, solve the linear re-
gression problem specified by the data contained in the file linregression.txt.
This is a whitespace-delimited text file formatted so that the i-th row con-
sists of y

i

, x
i,1

, . . . , x
i,n

. Use the function numpy.loadtxt() to load in the data.
Report your solution.

Non-linear Conjugate-Gradient Algorithms

The algorithm presented above is only valid for certain linear systems and quadratic
functions, but the basic strategy may be adapted to minimize more general convex
or non-linear functions. There are multiple ways to modify the algorithm, and they
all involve getting rid of Q, since there is no such Q for non-quadratic functions.
Generally speaking, we need to find new formulas for ↵

k

, r
k

, and �
k

.

The scalar ↵
k

is simply the result of performing a line-search in the given direc-
tion d

k

, so we may define

↵
k

= argmin
x

f(x
k

+ ↵d
k

).

The vector r
k

in the original algorithm was really just the gradient of the objective
function, and so we may define

r
k

= rf(x
k

).

177

Figure 18.2: Solving the Linear Regression problem results in a best-fit hyperplane.

There are various ways to define the constants �
k

in this more general setting, and
the right choice will depend on the nature of the objective function. A well-known
formula, due to Fletcher and Reeves, is

�
k+1

=
rfT

k+1

rf
k+1

rfT

k

rf
k

.

Making these adjustments is not di�cult, but we will opt instead to use built-
in functions in Python. In particular, the SciPy module scipy.optimize provides a
function fmin_cg(), which uses a non-linear Conjugate-Gradient method to minimize
general functions. Using this function is easy – we only need to pass to it the
objective function and an initial guess.

Application: Logistic Regression

Logistic regression is an important technique in statistical analysis and classification.
The core problem in logistic regression involves an optimization that we can tackle
using nonlinear Conjugate-Gradient.

As in linear regression, we have a set of data points y
i

together with predictor
variables x

i,1

, x
i,2

, . . . , x
i,n

for i = 1, . . . ,m. However, the y
i

are binary data points
– that is, they are either 0 or 1. Furthermore, instead of having a linear relation-
ship between the data points and the response variables, we assume the following

178 Lab 18. Gradient Descent Methods

probabilistic relationship:

P(y
i

= 1 |x
i,1

, . . . , x
i,n

) = p
i

,

where

p
i

=
1

1 + exp(�(�
0

+ �
1

x
i,1

+ · · ·+ �
n

x
i,n

))
.

The parameters of the model are the real numbers �
0

,�
1

, . . . ,�
n

. Observe that we
have p

i

2 (0, 1) regardless of the values of the predictor variables and parameters.

The probability of observing the data points y
i

under this model, assuming they
are independent, is given by the expression

m

Y

i=1

pyi
i

(1� p
i

)1�yi .

We seek to choose the parameters �
0

, . . . ,�
n

that maximize this probability. To
this end, define the likelihood function L : Rn+1 ! R by

L(�
0

, . . . ,�
n

) =
m

Y

i=1

pyi
i

(1� p
i

)1�yi .

We can now state our core problem as follows:

max
(�0,...,�n)

L(�
0

, . . . ,�
n

).

Maximizing this function can be problematic for numerical reasons. By taking
the logarithm of the likelihood, we have a more suitable objective function whose
maximizer agrees with that of the original likelihood function, since the logarithm is
strictly monotone increasing. Thus, we define the log-likelihood function l : Rn+1 !
R by l = log �L.

Finally, we multiply by �1 to turn our problem into minimization. The final
statement of the problem is:

min
(�0,...,�n)

�l(�
0

, . . . ,�
n

).

A few lines of calculation reveal that

l(�
0

, . . . ,�
n

) =�
m

X

i=1

log(1 + exp(�(�
0

+ �
1

x
i,1

+ · · ·+ �
n

x
i,n

)))+

m

X

i=1

y
i

(�
0

+ �
1

x
i,1

+ · · ·+ �
n

x
i,n

).

The values for the parameters that we obtain are known collectively as themaximum
likelihood estimate.

Let’s work through a simple example. We will deal with just one predictor
variable, and therefore two parameters. The data is given in Table 18.1. This is
obviously just toy data with no meaning, but one can think of the y

i

data points as
indicating, for example, the presence of absence of a particular disease in subject i,
with x

i

being the subject’s weight, or age, or something of the sort.

In the code below we initialize our data.

179

Table 18.1: Data for Logistic Regression Example

y x
0 1
0 2
0 3
0 4
1 5
0 6
1 7
0 8
1 9
1 10

>>> y = np.array([0, 0, 0, 0, 1, 0, 1, 0, 1, 1])

>>> x = np.ones((10, 2))

>>> x[:,1] = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

Although we have just one predictor variable, we initialized x with two columns, the
first of which consists entirely of ones, and the second of which contains the values
of the predictor variable. This extra column of ones corresponds to the parameter
�
0

, which, as you will note, is not multiplied by any of the predictor variables in
the log-likelihood function.

We next need to write a Python function that returns the value of our objective
function for any value of the parameters, (�

0

,�
1

).

>>> def objective(b):

... #Return -1*l(b[0], b[1]), where l is the log likelihood.

... return (np.log(1+np.exp(x.dot(b))) - y*(x.dot(b))).sum()

Finally, we minimize the objective function using fmin_cg().

>>> guess = np.array([1., 1.])

>>> b = fmin_cg(objective, guess)

Optimization terminated successfully.

Current function value: 4.310122

Iterations: 13

Function evaluations: 128

Gradient evaluations: 32

>>> print b

[-4.35776886 0.66220658]

We can visualize our answer by plotting the data together with the function

�(x) =
1

1 + exp(��
0

� �
1

x)
,

using the values �
0

,�
1

that we obtained from the minimization.

>>> dom = np.linspace(0, 11, 100)

>>> plt.plot(x, y, 'o')

180 Lab 18. Gradient Descent Methods

>>> plt.plot(dom, 1./(1+np.exp(-b[0]-b[1]*dom)))

>>> plt.show()

Using this procedure, we obtain the plot in Figure 18.3. Note that the graph
of �, known as a sigmoidal curve, gives the probability of y taking the value 1 at
a particular value of x. Observe that as x increases, this probability approaches 1.
This is reflected in the data.

Figure 18.3: Data from the logistic regression example together with the calculated
sigmoidal curve.

Problem 4. Following the example given above, find the maximum likeli-
hood estimate of the parameters for the logistic regression data in the file
logregression.txt. This is a whitespace-delimited text file formatted so
that the i-th row consists of y

i

, x
i,1

, x
i,2

, x
i,3

. Since there are three predictor
variables, there are four parameters in the model. Report the calculated
values.

You should be able to use much of the code above unchanged. In partic-
ular, the function objective() does not need any changes. You simply need
to set your variables y and x appropriately, and choose a new initial guess
(an array of length four). Note that x should be an m⇥ 4 array whose first
column consists entirely of ones, whose second column contains the values in
the second column of the data file, and so forth.

Logistic regression can become a bit more tricky when some of the predictor
variables take on binary or categorical values. In such situations, the data requires
a bit of pre-processing before running the minimization.

The values of the parameters that we obtain can be useful in analyzing relation-
ships between the predictor variables and the y

i

data points. They can also be used
to classify or predict values of new data points.

