
Lab 5

SQL 2 (The SQL Sequel)

Lab Objective: Learn more of the advanced and specialized features of SQL.

Database Normalization

Normalizing a database is the process of organizing tables and columns to mini-
mize the amount of redundant information in the database. For example, a non-
normalized database might have a table that stores customer contact information
and a table that contains all of the products a company has sold. However, they
might want to track who buys what products in case they need to contact them
later. To do so, they store all the contact information of a particular buyer along
with every item they purchased. Now, two tables store the customer contact infor-
mation. If we needed to update a customer’s phone number, we have to update two
tables. While that may not be bad for small databases, larger databases would be
near impossible to update correctly. The idea of normalizing a database allows us
to store all customer contact information in one place in the database. All other
tables that might need a customer’s name, phone number, or address would refer-
ence the contact information table. When an update needs to be performed, we
only need to update the contact information table. Then any table that references
this information is also automatically up to date.

To properly normalize a database, we need to discuss the types of relations
tables might have.

One to One

This is the simplest relation to model. A single table can be used to express this
relation. The relation is between one record and at most one other record. An
example of this relationship is an employee and their organization. One employee
works at one organization. Another example would be that a driver’s license belongs
to only one person.

51



52 Lab 5. Advanced SQL

StudentID Name MajorCode MinorCode
401767594 Michelle Fernandez 1 NULL
678665086 Gilbert Chapman NULL NULL
553725811 Roberta Cook 2 1
886308195 Rene Cross 3 1
103066521 Cameron Kim 4 2
821568627 Mercedes Hall NULL 3
206208438 Kristopher Tran 2 4
341324754 Cassandra Holland 1 NULL
262019426 Alfonso Phelps NULL NULL
622665098 Sammy Burke 2 3

Table 5.1: students

ID Name
1 Math
2 Science
3 Writing
4 Art

Table 5.2: fields

One to Many

This relationship and its inverse must be modeled with at least two tables. The
general approach is to use a unique ID. Note that a relationship that appears one
to one may actually be a one to many relationship. Many people will, therefore, use
the same unique ID approach on one to one relationships too in the case it turns
out to be a one to many relationship. An example of a one to many relationship
would be between an department and its employees. The department would receive
a unique ID and then each employee in that department would be tagged with that
ID.

Many to Many

This relationship requires at least three tables. A many to many relationship can
be visualized as two, separate one to many relationships. The records in each of
the two tables receive a unique ID. A third table then serves as a map between IDs
of table to IDs of the other table. An example of a many to many relationship is
doctors and patients. One doctor can have several patients and one patient can
have several doctors.

For the rest of the lab, we will be using the following tables: 5.1, 5.2, 5.3, and
5.4.

Problem 1. Classify the relations between the various records in these ta-
bles: 5.1, 5.2, 5.3, and 5.4.



53

StudentID ClassID Grade
401767594 4 C
401767594 3 B-
678665086 4 NULL
678665086 3 A+
553725811 2 C
678665086 1 NULL
886308195 1 A
103066521 2 C
103066521 3 C-
821568627 4 D
821568627 2 NULL
821568627 1 B
206208438 2 A
206208438 1 C+
341324754 2 D-
341324754 1 NULL
103066521 4 A
262019426 2 B
262019426 3 NULL
622665098 1 A
622665098 2 A-

Table 5.3: grades

ClassID Name
1 Calculus
2 English
3 Pottery
4 History

Table 5.4: classes

Classify each relation as either one to one, one to many, or many to many.
Identify the tables used in each relationship.

Note

There are instances where you would not want a completely normalized database.
Whether to normalize your database depends on your specific needs. Usually,
though, the decision to denormalize a database is a last-resort attempt to
improve performance.



54 Lab 5. Advanced SQL

A B

C

Figure 5.1: An inner joining of tables A, B, and C.

Joining Tables

We can use SQL to join two or more tables together for a query. This is a very
powerful tool. SQLite supports three types of standard table joins.

Joining tables is a common practice to collect data from di↵erent parts of the
database into a single table. Joins are absolutely essential in a normalized database
since data is split between multiple tables.

Inner Join

This is often the default join operation in SQL. An inner join can be depicted as
an intersection of two or more tables. When performing an inner join on tables,
the result will only be those records that match across all tables. For example,
this join will select all the students’ names along with their major as long as the
students.majorcode matches the majors.id. If the students.majorcode is missing or
null, then they won’t be selected.

SELECT students.name, majors.name FROM students JOIN majors ON students.majorcode -
=majors.id;

An inner join is equivalent to the following pseudo-loop in Python

for row_s in students:

for row_m in majors:

if predicates(row_s, row_m):

yield columns(row_s, row_m)

Left Outer Join

A left outer join will return all relations from the left table even if they don’t match
any relation on the joined tables. An illustration of a left outer join is given in
figure 5.2.



55

students.name majors.name
Michelle Fernandez Math
Roberta Cook Science
Rene Cross Writing
Cameron Kim Art
Kristopher Tran Science
Cassandra Holland Math
Sammy Burke Science

Table 5.5: An inner join of students and majors

A B

C

Figure 5.2: A left outer table join of A with tables B and C.

A Pythonesque loop that illustrates how to perform a left outer join is

for row_s in students:

for row_m in majors:

if predicates(row_s, row_m):

yield columns(row_s, row_m)

else:

yield columns(row_s)

The following left outer join will result in the table shown in table 5.6.

SELECT students.name, majors.name FROM students LEFT OUTER JOIN majors ON  -
students.majorcode=majors.id;

Cross Join

Essentially a Cartesian product of tables. Care must be taken when using cross join
because of the size of the joined table. A cross join should only be used on small
tables. It matches each relation in one table with every other possible combination
of relations in the joined tables. For example, if you were to run a cross join on the
above join. You would get every student matched with every major. This doesn’t
really make much sense but can be useful for other applications. Use with caution.



56 Lab 5. Advanced SQL

students.name majors.name
Michelle Fernandez Math
Gilbert Chapman None
Roberta Cook Science
Rene Cross Writing
Cameron Kim Art
Mercedes Hall None
Kristopher Tran Science
Cassandra Holland Math
Alfonso Phelps None
Sammy Burke Science

Table 5.6: A left outer join of students and majors

Function Description
MIN() Retrieve the smallest numeric value of a column
MAX() Retrieve the largest numeric value of a column
SUM() Sum the numeric values of a column
AVG() Retrieve the average numeric value of the column
COUNT() Retrieve the total number of matching records in a column

Table 5.7: SQL aggregation functions

Advanced Selections

Aggregate functions are useful for summarizing the data in a column. The functions
can be found in 5.7.

We can count the number of students by executing the following SQL statement.

SELECT COUNT(*) FROM students;

Ordering and Grouping Relations

The ORDER BY keyword can be used to sort the result set by columns. We can sort in
ascending order or descending order.

SELECT name FROM students ORDER BY name ASC;

SELECT name FROM students ORDER BY name DESC;

Another useful SQL keyword is the GROUP BY keyword. It is used along with an
aggregating function to group the result set by columns.

SELECT grade, COUNT(studentid) FROM grades GROUP BY grade;

The result set is given in table 5.8.



57

grade COUNT(studentid)
None 5
A 4
A+ 1
A- 1
B 2
B- 1
C 3
C+ 1
C- 1
D 1
D- 1

Table 5.8: Grouping of students by grade.

Problem 2. Create a database containing tables 5.1, 5.2, 5.3, and 5.4. Write
a SQL query to count how many students belong to each major, including
students that don’t have a major. Sort your results in ascending order by
name. Your result set should be table 5.9

None 3
Art 1
Math 2
Science 3
Writing 1

Table 5.9: Result set

Another important keyword is the HAVING keyword. This is necessary because
the WHERE clause does not support aggregate functions. A HAVING clause requires a
GROUP BY clause. The following will not work.

SELECT grade FROM grades GROUP BY grade WHERE COUNT(*)=1;

Since COUNT is an aggregating function, the following is required.

SELECT grade FROM grades GROUP BY grade HAVING COUNT(*)=1;

This SQL query returns all the grades that occur only once in the table. A simple
way to remember the di↵erence is WHERE operates on individual records and HAVING

operates on groups of records.



58 Lab 5. Advanced SQL

Problem 3. Select all the students who have received grades (non-null grades)
in more than two classes. How many grades did he receive?

Case Expression

A case expression allows you to temporarily modify records from a select operation.
There are two forms of the case expression; simple and searched. The simple form
of the expression is a match and replace on a specified column. A simple case
expression is demonstrated below. This code will return the name of the student
along with their majorcode. But instead of integers, the names of the majors will
be returned.

SELECT name,

CASE majorcode

WHEN 1 THEN 'Math'
WHEN 2 THEN 'Science'
WHEN 3 THEN 'Writing'
WHEN 4 THEN 'Art'
ELSE 'Undeclared'
END AS major

FROM students;

A searched case expression using a boolean expression for the WHEN clauses.

SELECT name,

CASE

WHEN majorcode IS NULL THEN 'Undeclared'
ELSE majorcode

END AS major,

CASE

WHEN minorcode IS NULL THEN 'Undeclared'
ELSE minorcode

END AS minor

FROM students;

Problem 4. Find the overall GPA of all the students in the school. Use a
regular 4.0 scale (A=4.0, B=3.0, C=2.0, D=1.0). Any pluses or minuses are
dropped so an A- becomes an A.

Your result set should be one column and one row with average of all
GPAs of all the students taking classes. Your solution should return a single
floating point number.

Use the ROUND() function in SQL to round your result to the nearest hun-
dredth.



59

Like Command

The SQL keyword, LIKE, allows us to match patterns in a column. For example,

SELECT name, studentid FROM students WHERE studentid LIKE '\%4';

will return all the students that have a student ID that ends with the digit 4. Use
‘\%’ before the ‘4’ to signify that there can be any number of characters before the
‘4.’ If you only want one character, you can use an underscore. For example, if you
were to search a database of words in the english dictionary and you entered the
following command:

SELECT word FROM englishDictionary WHERE word LIKE 'i_';

You would get words like ‘is,’ ‘it,’ or ‘in.’

Problem 5. Write a SQL statement that will find all students with a last
name that begins with the letter ‘C’ and return their names and majors.
Your returned records should be

Gilbert Chapman None
Roberta Cook Science
Rene Cross Writing


