
��Dynamic Optimization

Lab Objective: Many questions have optimal answers that change over time. Sequential decision
making problems are among this classification. In this lab you we learn how to solve sequential deci-
sion making problems, also known as dynamic optimization problems. We teach these fundamentals
by solving the finite-horizon cake eating problem.

Dynamic optimization answers different questions than optimization techniques we have studied
thus far. For example, an oil company might want to know how much oil to excavate in one day in
order to maximize profit. If each day is considered in isolation, then the strategy to optimize profit is
to maximize excavation in order to maximize profits. However, in reality oil prices change from day
to day as supply increases or decreases, and so maximizing excavation may in fact lead to less profit.
On the other hand, if the oil company considers how production on one day will affect subsequent
decisions, they may be able to maximize their profits. In this lab we explore techniques for solving
such a problem.

The Cake Eating Problem

Rather than maximizing oil profits, we focus on solving a general problem that can be applied in
many areas called the cake eating problem. Given a cake of a certain size, how do we eat it to
maximize our enjoyment (also known as utility) over time? Some people may prefer to eat all of
their cake at once and not save any for later. Others may prefer to eat a little bit at a time. These
preferences are expressed with a utility function. Our task is to find an optimal strategy given a
smooth, strictly increasing and concave utility function, u. Precisely, given a cake of size W and
some amount of consumption c

0

2 [0,W ], the utility gained is given by

u(c
0

).

For this lab we restrict our attention to utility functions that have the point u(0) = 0. Although any
size of W could be used, for simplicity of this lab assume that W has size 1. To further simplify the
problem assume that W is cut into N equally-sized pieces. If we want to maximize utility in one
time period, we consume the entire cake. How do we maximize utility over several days?
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Discount Factors

A person or firm typically has a time preference for saving or consuming. For example, a dollar today
can be invested and yield interest, whereas a dollar received next year does not include the accrued
interest. In this lab, cake in the present yields more utility than cake in the future. We can model
this by multiplying future utility by a discount factor � 2 (0, 1). For example, if we were to consume
c
0

cake at time 0 and c
1

cake at time 1, with c
0

= c
1

then the utility gained at time 0 is larger than
the utility at time 1.

u(c
0

) > �u(c
0

).

The Optimization Problem

If we are to consume a cake of size W over T + 1 time periods, then our consumption at each step
is represented as a vector

[c
0

, c
1

, . . . , c
T

]

T

where
T

X

i=0

c
i

= W.

This vector is called a policy vector. The optimization problem is to

max

ct

T

X

t=0

�tu(c
t

)

subject to
T

X

t=0

c
t

= W

c
t

� 0.

Problem 1. Write a function called graph_policy() that will accept a policy vector c, a
utility function u(x), and a discount factor �. Return the total utility gained with the policy
input. Also display a plot of the total cumulative utility gained over time. Ensure that the
policy that the user passes in sums to 1. Otherwise, raise a ValueError. It might seem obvious
what sort of policy will yield the most utility, but the truth may surprise you. See Figure 20.1
for some examples.

# The policy functions used in the Figure below.
>>> pol1 = np.array([1, 0, 0, 0, 0])
>>> pol2 = np.array([0, 0, 0, 0, 1])
>>> pol3 = np.array([0.2, 0.2, 0.2, 0.2, 0.2])
>>> pol4 = np.array([.4, .3, .2, .1, 0])



�8�

Figure 20.1: Plots for various policies with u(x) =
p
x and � = 0.9. Policy 1 eats all of the cake in

the first step while policy 2 eats all of the cake in the last step. Their difference in utility demonstrate
the effect of the discount factor on waiting to eat. Policy 3 eats the same amount of cake at each
step, while policy 4 begins by eating a lot of the cake but eats less and less as time goes on until the
cake runs out.

The Value Function

The cake eating problem is an optimization problem and the value function is used to solve it. The
value function V (a, b,W ) is the highest utility we can achieve.
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V (a, b,W ) = max

ct

b

X

t=a

�tu(c
t

)

subject to
b

X

t=a

c
t

= W

c
t

� 0.

The value function gives the utility gained from following an optimal policy from time a to time
b. V (a, b, W

2

) gives how much utility we will gain by proceeding optimally from t = a if half of a cake
of size W was eaten before time t = a.

By using the optimal value in the future, we can determine the optimal value for the present.
In other words, we must iterate backwards to solve the value problem. Let W

i

represent the total
amount of cake left at time t = i. Observe that W

i+1

 W
i

for all i, because our problem does not
allow for the creation of more cake. The value function can be expressed as

V (t, T,W
t

) = max

Wt+1

(u(W
t

�W
t+1

) + �V (t, T � 1,W
t+1

)) . (20.1)

u(W
t

� W
t+1

) is the value gained from eating W
t

� W
t+1

cake. �V (t, T � 1,W
t+1

) is the value of
saving W

t+1

cake until later. Recall that the utility function u(x) and � are known.
In order to solve the problem iteratively, W is split into N equally-sized pieces, meaning that

W
t

only has N + 1 possible values. Programmatically, V (t, T,W
t

) can be solved by trying each
possible W

t+1

and choosing the one that gives the highest utility. Knowing the maximum utility in
the future allows us to calculate the maximum utility in the present.

Problem 2. Write a helper function to assist in solving the value function. Assume our cake
has volume 1 and N equally-sized pieces. Write a method that accepts N and a utility function
u(x). Create a partition vector whose entries correspond to possible amounts of cake. For
example, if split a cake into 4 pieces, the vector is

w = [0, 0.25, 0.5, 0.75, 1.0]T.

Construct and return a matrix whose (ij)th entry is the amount of utility gained by starting
with i pieces and saving j pieces (where i and j start at 0). In other words, the (ij)th entry
should be u(w

i

� w
j

).

Set impossible situations to 0 (i.e., eating more cake than you have available). The result-
ing lower triangular matrix is the consumption matrix.

For example, the following matrix results with N = 4 and u(x) =
p
x.

2

6

6

6

6

4

0 0 0 0 0

u(0.25) 0 0 0 0

u(0.5) u(0.25) 0 0 0

u(0.75) u(0.5) u(0.25) 0 0

u(1) u(0.75) u(0.5) u(0.25) 0

3

7

7

7

7

5

.
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Solving the Optimization Problem

At each time t, W
t

can only have N + 1 values, which will be represented as w
i

=

i

N

, which is i
pieces of cake remaining. For example, if N = 4 then w

3

represents having three pieces of cake left
and w

3

= 0.75.
The (N + 1) ⇥ (T + 1) matrix, A, that solves the value function is called the value function

matrix. We will calculate the value function matrix step-by-step. A
ij

is the value of having w
i

cake
at time j. Like the consumption matrix, i and j start at 0. It should be noted that A

0j

= 0 because
there is never any value in having w

0

cake, u(w
0

) = u(0) = 0.
Initially we do not know how much cake to eat at t = 0: should we eat one piece of cake (w

1

),
or perhaps all of the cake (w

N

)? Indeed there may be many scenarios to consider. It may not be
obvious which option is best and that option may change depending on the discount factor �.

Instead of asking how much cake to eat at some time t, we should ask how valuable w
i

cake is
at time t? At some time t, there may be numerous decisions, but at the last time period, the only
decision to make is how much cake to eat at t = T .

Since there is no value in having any cake left over when time runs out, the decision at time T
is obvious: eat the rest of the cake. The amount of utility gained from having w

i

cake at time T is
given by u(w

i

). This utility is A
iT

. Written in the form of (20.1),

A
iT

= V (0, 0, w
i

) = max

wj

(u(w
i

� w
j

) + �V (0,�1, w
j

)) = u(w
i

). (20.2)

This happens because V (0,�1, w
j

) = 0. As mentioned, there is no value in saving cake so this
equation is maximized when w

j

= 0. All possible values of w
i

are calculated so that the value of
having w

i

cake at time T is known.

Achtung!

Given a time interval from t = 0 to t = T it is true that the true utility of waiting until time T
to eat w

i

cake is actually �Tu(W
i

), and can be verified by inspecting the difference of policies 1
and 2 in Figure 20.1. However, programmatically the problem is solved backwards by beginning
with t = T as an isolated state and calculating its value. This is why the value function above is
V (0, 0,W

i

) and not V (T, T,W
i

). After calculating t = T , t = T � 1 is introduced, and its value
is calculated by considering the utility from eating w

i

� w
j

cake at time t = T � 1, plus the
utility of � times the value of w

j

at time T . We then proceed iteratively backwards, considering
t = T � 2 and considering its utility plus the utility of � times the value at time T � 1.

Problem 3. Write a function called eat_cake() that accepts the stopping time T , the number
of equal sized pieces that divides the cake N , a discount factor �, and a utility function u(x).
Return the value function matrix with all zeros except for the last column. The spec file
indicates returning a policy matrix as well, for now return a matrix of zeros.
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For example, the following matrix results with T = 3, N = 4, � = 0.9, and u(x) =
p
x.

2

6

6

6

6

4

0 0 0 u(0)
0 0 0 u(0.25)
0 0 0 u(0.5)
0 0 0 u(0.75)
0 0 0 u(1)

3

7

7

7

7

5

.

We can evaluate the next column of the value function matrix, A
i(T�1)

, by modifying (20.2) as
follows,

A
i(T�1)

= V (0, 1, w
i

) = max

wj

(u(w
i

� w
j

) + �V (0, 0, w
j

)) = max

wj

(u(w
i

� w
j

) + �A
jT

)) . (20.3)

Remember that there is a limited set of possibilities for w
j

, and we only need to consider options
such that w

j

 w
i

. Instead of doing these one by one for each w
i

, we can compute the options for
each w

i

simultaneously by creating a matrix. This information is stored in an (N + 1) ⇥ (N + 1)

matrix known as the current value matrix, or CV t, where the (ij)th entry is the value of eating i� j
pieces of cake at time t and saving j pieces of cake until the next period. For t = T � 1,

CV T�1

ij

= u(w
i

� w
j

) + �A
jT

. (20.4)

The largest entry in the ith row of CV T�1 is the optimal value that the value function can
attain at T �1, given that we start with w

i

cake. The maximal values of each row of CV T�1 become
the column of the value function matrix, A, at time T � 1. Because we know the last column of A,
we may iterate backwards to fill in the rest of A.

Achtung!

The notation CV t does not mean raising the matrix to the tth power, it indicates what time
period we are in. All of the CV t could be grouped together into a three-dimensional matrix,
CV , that has dimensions (N + 1) ⇥ (N + 1) ⇥ (T + 1). Although this is possible, we will not
use CV in this lab, and will instead only consider CV t for any given time t.

CV 2

=

0 0 0 0 0

0.5 0.45 0 0 0

0.707 0.95 0.636 0 0

0.866 1.157 1.136 0.779 0

1 1.316 1.343 1.279 0.9
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6

6

6

6

6

6

6

6

6

6
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3

7

7

7

7

7

7

7

7

7

7

7
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This is CV 2 where T = 3, � = .9, N = 4, and u(x) =
p
x. The maximum value of each row,

circled in red, is used in the 3

rd column of A. Remember that A’s column index begins at 0, so the
3

rd column represents t = 2. See Figure 20.2.
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Now that the column of A corresponding to t = T�1 has been calculated, we repeat the process
for T � 2 and so on until we have calculated each column of A. In summary, at each time step t, find
CV t and then set A

it

as the maximum value of the ith row of CV t. Generalizing (20.3) and (20.4)
shows

CV t

ij

= u(w
i

� w
j

) + �A
j(t+1)

. A
it

= max

j

�

CV t

ij

�

. (20.5)

A =

2

6

6

6

6

4

0 0 0 0

0.5 0.5 0.5 0.5
0.95 0.95 0.95 0.707
1.355 1.355 1.157 0.866
1.7195 1.562 1.343 1

3

7

7

7

7

5

.

Figure 20.2: The value function matrix where T = 3, � = .9, N = 4, and u(x) =
p
x. The bottom

left entry indicates the highest utility that can be achieved is 1.7195.

Problem 4. Complete the function eat_cake() to determine the entire value function matrix.
Starting from the next to last column, iterate backwards by

• calculating the current value matrix for time t using (20.5),

• finding the largest value in each row of the current value matrix,

• filling in the corresponding column of A with these values.

With the value function matrix constructed, the optimization problem is solved in some sense.
The value function matrix contains the maximum possible utility to be gained. However, it is not
immediately apparent what policy should be followed by only inspecting the value function matrix,
A. The (N + 1) ⇥ (T + 1) policy matrix, P, is used to find the optimal policy. The (ij)th entry of
the policy matrix indicates how much cake to eat at time j if we have i pieces of cake. Like A and
CV , i and j begin at 0.

The last column of P is a straightforward calculation similar to last column of A. P
iT

= w
i

,
because at time T we know that the remainder of the cake should be eaten. Recall that the column
of A corresponding to t was calculated by the maximum values of CV t. The column of P for time t
is calculated by taking w

i

� w
j

, where j is the smallest index corresponding to the maximum value
of CV t,

P
it

= w
i

� w
j

.

where j = {min{j} | CV t

ij

� CV t

ik

8 k 2 [0, 1, . . . , N ] }

P =

0 0 0 0

0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.5

0.25 0.25 0.5 0.75

0.25 0.5 0.5 1.

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5
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An example of P where T = 3, � = .9, N = 4, and u(x) =

p
x. The optimal policy is found by

starting at i = N , j = 0 and eating as much cake as the (ij)th entry indicates, as traced out by the
red arrows. The blue arrows trace out the policy that would occur if we only had 2 time intervals.
What would be the optimal policy if we had 3 time intervals?

0 0 0 0

p
0.25

p
0.25

p
0.25

p
0.25

p
0.25 + �

p
0.25

p
0.25 + �

p
0.25

p
0.25 + �

p
0.25

p
0.5

p
0.25 + �

p
0.25 + �2p

0.25
p

0.25 + �
p

0.25 + �2p
0.25

p
0.5 + �

p
0.25

p
0.75

p
0.25 + �

p
0.25 + �2p

0.25 + �3p
0.25

p
0.5 + �

p
0.25 + �2p

0.25
p

0.5 + �
p

0.5
p

1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

A =

The non-simplified version of Figure 20.2. Notice that the value of A
ij

is equal to following
optimal path if you start at P

ij

. A
40

has the same values traced by the red arrows in P above and
A

42

has the same values traced by the blue arrows.

Problem 5. Modify eat_cake() to determine the policy matrix. Initialize the matrix as zeros
and fill it in starting from the last column at the same time that you calculate the value function
matrix. (Hint: You may find np.argmax() useful.)

Problem 6. The (ij)th entry of the policy matrix tells us how much cake to eat at time j if we
start with i pieces. Use this information to write a function that will find the optimal policy for
starting with a cake of size 1 split into N pieces given the stopping time T , the utility function
u, and a discount factor �. Use graph_policy() to plot the optimal policy. See Figure 20.3
for an example.

Figure 20.3: The graph of the optimal policy (Policy 3 from Figure 20.1) where T = 4, � = .9,
N = 5, and u(x) =

p
x. It achieves a value of roughly 1.83.
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A summary of the arrays generated in this lab is given below, in the order that they were
generated in the lab:

Consumption matrix: Equal to u(u
i

�w
j

), the utility gained when you start with i pieces and
end with j pieces.

Value Function Matrix, A: How valuable it is to have w
i

pieces at time j.
Current Value Matrix, CV t: How valuable each possible decision is at time t.
Policy Matrix, P : The amount of cake you should eat at time t.


