
Lab 1

Unix Shell 1: Introduction

Lab Objective: Explore the basics of the Unix Shell. Understand how to navigate

and manipulate file directories. Introduce the Vim text editor for easy writing and

editing of text or other similar documents.

Unix was first developed by AT&T Bell Labs in the 1970s. In the 1990s, Unix
became the foundation of Linux and MacOSX. The Unix shell is an interface for
executing commands to the operating system. The majority of servers are Linux
based, so having a knowledge of Unix shell commands allows us to interact with
these servers.

As you get into Unix, you will find it is easy to learn but di�cult to master. We
will build a foundation of simple file system management and a basic introduction
to the Vim text editor. We will address some of the basics in detail and also include
lists of commands that interested learners are encouraged to research further.

Note

Windows is not built o↵ of Unix, but it does come with a command line
tool. We will not cover the equivalent commands in Windows command line,
but you could download a Unix-based shell such as Git Bash or Cygwin to
complete this lab (you will still lose out on certain commands).

File System

Achtung!

In this lab you will work with files on your computer. Be careful as you go
through each problem and as you experiment on your own. Be sure you are
in the right directories and subfolders before you start creating and deleting
files; some actions are irreversible.

1

2 Lab 1. Introduction to the Unix Shell

Navigation

Typically you have probably navigated your comptuer by clicking on icons to open
directories and programs. In the terminal, instead of point and click we use typed
commands to move from directory to directory.

Begin by opening the Terminal. The text you see in the upper left of the
Terminal is called the prompt. As you navigate through the file system you will
want to know where you are so that you know you aren’t creating or deleting files
in the wrong locations.

To see what directory you are currently working in, type pwd into the prompt.
This command stands for print working directory, and as the name suggests it
prints out the string of your current location.

Once you know where you are, you’ll want to know where you can move. The
ls, or list segments, command will list all the files and directories in your current
folder location. Try typing it in.

When you know what’s around you, you’ll want to navigate directories. The cd,
or change directory, command allows you to move through directories. To change
to a new directory, type the cd command followed by the name of the directory to
which you want to move (if you cd into a file, you will get an error). You can move
up one directory by typing cd ...

Two important directories are the root directory and the home directory. You
can navigate to the home directory by typing cd s or just cd. You can navigate to
root by typing cd /.

Problem 1. Using these commands, navigate to the Shell1/ directory pro-
vided with this lab. We will use this directory for the remainder of the lab.
Use the ls command to list the contents of this directory. NOTE: You will
find a directory within this directory called Test/ that is availabe for you to
experiment with the concepts and commands found in this lab. The other
files and directories are necessary for the exercises we will be doing, so take
care not to modify them.

Getting Help

As you go through this lab, you will come across many commands with functionality
beyond what is taught here. The Terminal has two nice commands to help you with
these commands. The first is man <command>, which opens the manual page for the
command following man. Try typing in man ls; you will see a list of the name and
description of the ls command, among other things. If you forget how to use a
command the manual page is the first place you should check to remember.

The apropos <keyword> command will list all Unix commands that have <keyword>

contained somewhere in their manual page names and descriptions. For example,
if you forget how to copy files, you can type in apropos copy and you’ll get a list of
all commands that have copy in their description.

3

Flags Description
-a Do not ignore hidden files and folders
-l List files and folders in long format
-r Reverse order while sorting
-R Print files and subdirectories recursively
-s Print item name and size
-S Sort by size
-t Sort output by date modified

Table 1.1: Common flags of the ls command.

Flags

When you typed in man ls up above, you may have noticed several options listed in
the description, such as -a, -A, --author. These are called flags and change the func-
tionality of commands. Most commands will have flags that change their behavior.
Table 1.1 contains some of the most common flags for the ls command.

Multiple flags can be combined as one flag. For example, if we wanted to list
all the files in a directory in long format sorted by date modified, we would use
ls -a -l -t or ls -alt.

Manipulating Files and Directories

In this section we will learn how to create, copy, move, and delete files and folders.
Before you begin, cd into the Test/ directory in Shell1/.

To create a text file, use touch <filename>. To create a new directory, use mkdir

<dir_name>.

To copy a file into a directory, use cp <filename> <dir_name>. When making a copy
of a directory, the command is similar but must use the -r flag. This flag stands
for recursively copying files in subdirectories. If you try to copy a file without the
-r the command will return an error.

Moving files and directories follows a similar format, except no -r flag is used
when moving one directory into another. The command mv <filename> <dir_name>

will move a file to a folder and mv <dir1> <dir2> will move the first directory into the
second. If you want to rename a file, use mv <file_old> <file_new>; the same goes for
directories.

When deleting files, use rm <filename>, or rm -r <dir_name> when deleting a direc-
tory. Again, the -r flag tells the Terminal to recursively remove all the files and
subfolders within the targeted directory.

If you want to make sure your command is doing what you intend, the -v flag
tells rm, cp, or mkdir to have the Terminal print strings of what it is doing. When
your Terminal gets too cluttered, use clear to clean it up.

Below is an example of all these commands in action.

$ cd Test

$ touch data.txt # create new empty file data.txt

$ mkdir New # create directory New

$ ls # list items in test directory

4 Lab 1. Introduction to the Unix Shell

Commands Description
clear Clear the terminal screen
cp file1 dir1 Create a copy of file1 and move it to dir1/

cp file1 file2 Create a copy of file1 and name it file2
cp -r dir1 dir2 Create a copy of dir1/ and all its contents into dir2/

mkdir dir1 Create a new directory named dir1/

mkdir -p path/to/new/dir1 Create dir1/ and all intermediate directories
mv file1 dir1 Move file1 to dir1/

mv file1 file2 Rename file1 as file2
rm file1 Delete file1 [-i, -v]
rm -r dir1 Delete dir1/ and all items within dir1/ [-i, -v]
touch file1 Create an empty file named file1

Table 1.2: The commands discussed in this section.

New data.txt

$ cp data.txt New/ # copy data.txt to New directory

$ cd New/ # enter the New directory

$ ls # list items in New directory

data.txt

$ mv data.txt new_data.txt # rename data.txt new_data.txt

$ ls # list items in New directory

new_data.txt

$ cd .. # Return to test directory

$ rm -rv New/ # Remove New directory and its contents

removed 'New/data.txt'
removed directory: 'New/'
$ clear # Clear terminal screen

Table 1.2 contains all the commands we have discussed so far. Notice the com-
mon flags are contained in square brackets; use man to see what these mean.

Problem 2. Inside the Shell1/ directory, delete the Audio/ folder along
with all its contents. Create Documents/, Photos/, and Python/ directories.

Wildcards

As we are working in the file system, there will be times that we want to perform
the same command to a group of similar files. For example, if you needed to move
all text files within a directory to a new directory. Rather than copy each file one at
a time, we can apply one command to several files using wildcards. We will use the *

and ? wildcards. The * wildcard represents any string and the ? wildcard represents
any single character. Though these wildcards can be used in almost every Unix
command, they are particularly useful when dealing with files.

$ ls

File1.txt File2.txt File3.jpg text_files

$ mv -v *.txt text_files/

5

Command Description
*.txt All files that end with .txt.
image* All files that have image as the first 5 characters.
py All files that contain py in the name.
doc*.txt All files of the form doc1.txt, doc2.txt, docA.txt, etc.

Table 1.3: Common uses for wildcards.

Command Description
cat Print the contents of a file in its entirety
more Print the contents of a file one page at a time
less Like more, but you can navigate forward and backward
head Print the first 10 lines of a file
head -nK Print the first K lines of a file
tail Print just the last 10 lines of a file
tail -nK Print the last K lines of a file

Table 1.4: Commands for printing contents of a file

File1.txt -> text_files/File1.txt

File2.txt -> text_files/File2.txt

$ ls

File3.jpg text_files

See Table 1.3 for examples of common wildcard usuage.

Problem 3. Within the Shell1/ directory, there are many files. We will
organize these files into directories. Using wildcards, move all the .jpg files
to the Photos/ directory, all the .txt files to the Documents/ directory, and
all the .py files to the Python/ directory. You will see a few other folders in
the Shell1/ directory. Do not move any of the files within these folders at
this point.

Displaying File Contents

When using the file system, you may be interested in checking file content to be
sure you’re looking at the right file. Several commands are made available for ease
in reading file content.

The cat command, followed by the filename will display all the contents of a
file on the screen. If you are dealing with a large file, you may only want to view
a certain number of lines at a time. Use less <filename> to restrict the number of
lines that show up at a time. Use the arrow keys to navigate up and down. Press
q to exit.

For other similar commands, look at table 1.4.

6 Lab 1. Introduction to the Unix Shell

Command Description
find dir1 -type f -name "word" Find all files in dir1/ (and its subdirectories) called word

(-type f is for files; -type d is for directories)
grep "word" filename Find all occurences of word within filename

grep -nr "word" dir1 Find all occurences of word within the files inside dir1/
(-n lists the line number; -r performs a recursive search)

Table 1.5: Commands using find and grep.

Searching the File System

There are two commands we use for searching through our directories. The find

command is used to find files or directories in a directory hierarchy. The grep

command is used to find lines matching a string. More specifically, we can use grep

to find words inside files. We will provide a basic template in Table 1.5 for using
these two commands and leave it to you to explore the uses of the other flags. The
man command can help you learn about them.

Problem 4. In addition to the .jpg files you have already moved into the
Photot/ folder, there are a few other .jpg files in a few other folders within
the Shell1/ directory. Find where these files are using the find command
and move them to the Photos/ folder.

Pipes and Redirects

Terminal commands can be combined using pipes. When combined, or piped, the
output of one command is passed to the another. Two commands are piped together
using the | operator. To demonstrate pipes we will first introduce commands that
allow us to view the contents of a file in Table 1.4.

In the first example below, the cat command output is piped to wc -l. The wc

command stands for word count. This command can be used to count words or
lines. The -l flag tells the wc command to count lines. Therefore, this first example
counts the number of lines in assignments.txt. In the second example below, the
command lists the files in the current directory sorted by size in descending order.
For details on what the flags in this command do, consult man sort.

$ cd Shell1/Files/Feb

$ cat assignments.txt | wc -l

9

$ ls -s | sort -nr

12 project3.py

12 project2.py

12 assignments.txt

4 pics

total 40

7

In the previous example, we pipe the contents of assignments.txt to wc -l

using cat. When working with files specifically, you can also use redirects. The
< operator gives a file to a Terminal command. The same output from the first
example above can be achieved by running the following command:

$ wc -l < assignments.txt

9

If you are wanting to save the resulting output of a command to a file, use > or
>>. The > operator will overwrite anything that may exist in the output file whereas
>> will append the output to the end of the output file. For example, if we want
to append the number of lines in assignments.txt to word count.txt, we would
run the following commmand:

$ wc -l < assignements.txt >> word_count.txt

Since grep is used to print lines matching a pattern, it is also very useful to use
in conjunction with piping. For example, ls -l | grep root prints all files associated
with the root user.

Problem 5. The words.txt file in the Documents/ directory contains a list
of words that are not in alphabetical order. Write the number of words in
words.txt and an alphabetically sorted list of words to sortedwords.txt

using pipes and redirects. Save this file in the Documents/ directory. Try to
accomplish this with a total of two commands or fewer.

Archiving and Compression

In file management, the terms archiving and compressing are commonly used inter-
changeably. However, these are quite di↵erent. To archive is to combine a certain
number of files into one file. The resulting file will be the same size as the group of
files that were archived. To compress is to take a file or group of files and shrink the
file size as much as possible. The resulting compressed file will need to be extracted
before being used.

The ZIP file format is the most popular for archiving and compressing files. If the
zip Unix command is not installed on your system, you can download it by running
sudo apt-get install zip. Note that you will need to have administrative rights to
download this package. To unzip a file, use unzip.

$ cd Shell1/Documents

$ zip zipfile.zip doc?.txt

adding: doc1.txt (deflated 87%)

adding: doc2.txt (deflated 90%)

adding: doc3.txt (deflated 85%)

adding: doc4.txt (deflated 97%)

use -l to view contents of zip file

$ unzip -l zipfile.zip

8 Lab 1. Introduction to the Unix Shell

Archive: zipfile.zip

Length Date Time Name

--------- ---------- ----- ----

5234 2015-08-26 21:21 doc1.txt

7213 2015-08-26 21:21 doc2.txt

3634 2015-08-26 21:21 doc3.txt

4516 2015-08-26 21:21 doc4.txt

--------- -------

16081 3 files

$ unzip zipfile.zip

inflating: doc1.txt

inflating: doc2.txt

inflating: doc3.txt

inflating: doc4.txt

While the zip file format is more popular on the Windows platform, the tar

utility is more common in the Unix environment. The following commands use tar

to archive the files and gzip to compress the archive.

Notice that all the commands below have the -z, -v, and -f flags. The -z flag
calls for the gzip compression tool, the -v flag calls for a verbose output, and -f

indicates the next parameter will be the name of the archive file.

$ ls

doc1.txt doc2.txt doc3.txt doc4.txt

use -c to create a new archive

$ tar -zcvf docs.tar.gz doc?.txt

doc1.txt

doc2.txt

doc3.txt

doc4.txt

$ ls

docs.tar.gz

use -t to view contents

$ tar -ztvf <archive>

-rw-rw-r-- username/groupname 5119 2015-08-26 16:50 doc1.txt

-rw-rw-r-- username/groupname 7253 2015-08-26 16:50 doc2.txt

-rw-rw-r-- username/groupname 3524 2015-08-26 16:50 doc3.txt

-rw-rw-r-- username/groupname 4516 2015-08-26 16:50 doc4.txt

use -x to extract

$ tar -zxvf <archive>

doc1.txt

doc2.txt

doc3.txt

doc4.txt

Problem 6. Archive and compress the files in the Photos/ directory using
tar and gzip. Name the arhive pics.tar.gz and save it inside the Photos/

9

directory. Use ls -l to see how much the files were compressed in the process.

Vim: A Terminal Text Editor

Today many have become accustomed to having GUIs (Graphic User Interfaces)
for all their applications. Before modern text editors (i.e. Microsoft Word, Pages
for Mac, Google Docs) there were terminal text editors. Vim is one of the most
popular terminal text editors. While vim may be intimidating at first, as you
become familiar with vim it may become one of your preferred text editors for
writing code.

One of the major philosophies of vim is to be able to keep your fingers on the
keyboard at all times. Thus, vim has many keyboard shortcuts that allow you to
navigate the file and execute commands without relying on a mouse, toolbars, or
arrow keys.

In this section, we will go over the basics of navigation and a few of the most
common commands. We will also provide a list of commands that interested readers
are encouraged to research.

It has been said that at no point does somebody finish learning Vim. You will
find that you will constantly be able to add something new to your arsenal.

Getting Started

Start Vim with the following command:

$ vim my_file.txt

When executing this command, if my file.txt already exists, vim will open
the file and we may begin editing the existing file. If my file.txt does not exist,
it will be created and we may begin editing the file.

You may notice if you start typing the characters may or may not appear on
your screen. This is because vim has multiple modes. When vim starts, we are
placed in command mode. We want to be in insert mode to begin entering text. To
enter insert mode from command mode, hit the i key. You should see -- INSERT --

at the bottom of your terminal window. In insert mode vim act like a typical word
processor. Letters will appear in the document as you type them. If you ever need
to leave insert mode and return to command mode, hit the Esc key.

Saving/Quitting Vim

To save or quit the current document, first enter last line mode by pressing the :

key. To just save, type w and hit enter. To save and quit, type wq. To quit without
saving, run q!

10 Lab 1. Introduction to the Unix Shell

Command Description
a append text after cursor
A Append text to end of line
o Begin a new line below the cursor
O Begin a new line above the cursor
s Substitute characters under cursor

Table 1.6: Commands for entering insert mode

Problem 7. Using vim, create a new file in the Documents/ directory named
first vim.txt. Write least multiple lines to this file. Save and exit the file
you have created.

Navigation

We are accustomed to navigating GUI text editors using a mouse and arrow keys.
In vim, we navigate using keyboard shortcuts while in command mode.

Problem 8. Become accustomed to navigating in command mode using the
following keys:

Command Description
k up
j down
h left
l right
w beginning of next word
e end of next word
b beginning of previous word
0 (zero) beginning of line
$ end of line

gg beginning of file
#gg go to line #

G end of file

Alternative Ways to Enter Insert Mode

Hitting the i key is not the only way to enter insert mode. Alternative methods are
described in Table 1.6.

11

Command Description
x delete letter after cursor
X delete letter before cursor
dd delete line
dl delete letter
d#l delete # letters
dw delete word
d#w delete # words

Table 1.7: Commands for deleting in command mode

Visual Mode

Visual mode allows you to select multiple characters. Among other things, we can
use this to replace words with the s command, and we can select text to cut or copy.

Problem 9. Open the document you created in the previous problem. While
in command mode, enter visual mode by pressing the v key. Using the nav-
igation keys discussed earlier, move the cursor to select a few words. Copy
this text using the y key (stands for yank). Return to command mode by
pressing Esc. Move the cursor to where you would like to paste the text and
press the p key to paste. Similarly, select text in visual mode and hit d to
delete the text and paste it somewhere else with the p key.

Deleting Text in Command Mode

Insert mode should only be used for inserting text. Try to get in the habit of leaving
insert mode as soon as you are done adding the text you want to add. Deleting text
is much more e�cient and versatile in command mode. The x and X commands are
used to delete single characters. The d command is always accompanied by another
navigational command. See Table 1.7 for a few examples.

A Few Closing Remarks

In the next lab, we will introduce how to access another machine through the
terminal. Vim will be essential in this situation since GUIs will not be an option.

If you are interested in continuing to use vim, you may be interested in checking
out gvim. Gvim is a GUI that uses vim commands in a more traditional text editor
window.

Also, in Table 1.8, we have listed a few more commands that are worth exploring.
If you are interested in any of these features of vim, we encourage you to research
these features further on the internet. Additionally, many people have published
their vimrc file on the internet so other vim users can learn what options are worth
exploring. It is also worth noting that we can use vim navigation commands in

12 Lab 1. Introduction to the Unix Shell

Command Description
:map customize

:help view vim docs
cw change word
u undo

Ctrl-R redo
. Repeat the previous command
* find next occurrence of word under cursor
find previous occurrence of word under cursor

/str find str in file
n find next match
N find previous match

Table 1.8: Commands for entering insert mode

many other places in the shell. For example, try using the navigation commands
when viewing the man vim page.

