Lab 3

Basic Regular Expressions

Lab Objective: Learn the basics of using regular expressions to find text

Regular expressions allow for quick searching and replacing of general patterns
of text. While nearly all text editors have a feature that will find and replace exact
strings of text, regular expressions are used to find text in a much more general way.
For example, using a single regular expression, you can find every email address in
a text file without having to sift through it by hand.

Terminology and Basics

A “regular expression” is basically just a string of characters that follow a certain
syntax. Computer programs can then interpret these expressions as instructions to
search for certain kinds of text. We will often call regular expressions “patterns”,
and we will say that certain patterns “match” certain strings. The general idea is
that a regular expression represents a large set of strings (for example, all valid email
addresses), and if a specific string is in that set, we say that the regular expression
matches that string.

. N
Acutuna!

Regular expression libraries have been implemented and are a part of the stan-
dard distribution of nearly every programming language, and many text editors
have a find-and-replace mode that uses regular expressions. Unfortunately, the
syntax for regular expressions may be slightly different in each implementation.
There is no universal standard for all regular expressions across all platforms.
However, the orginal syntax and a few variants are very widespread, so the
basic regular expression techniques we learn in this lab should be virtually the
same in almost every situation you will encounter them.

- J

The simplest use of regular expressions is to match text literally. For example,
the pattern "cat" matches the string "cat" but does not match the strings "dog" or
"bat",

25

26 Lab 3. Basic Regular Expressions

Now that we have a general idea of what regular expressions are, we will see
how to use them in Python.

Regular Expressions in Python

The python package re contains the functionality for using regular expressions. To
use it, simply run the command import re.

The following Python code demonstrates what we said earlier about the regular
expression "cat":

>>> bool(re.match("cat", "cat"))
True
>>> bool(re.match("cat", "dog"))
False
>>> bool(re.match("cat", "bat"))
False

The main functions we will use are re.match(pattern, string_to_test) and re.
compile(pattern). You can think of re.match as returning a boolean value representing
whether the given pattern matched the given string. The function re.compile returns
a compiled object that represents a regular expression. You can then call the match
function on this compiled object to get a boolean value. There is a similar function,
re.search, which will match the regular expression anywhere inside a given string.
We will see one example shortly where re.search is preferred in multiline matching.

The following code shows an example of how to use re.compile:

>>> pattern = re.compile("any regular expression")
>>> result = pattern.match("any string")

The above code is equivalent to the following:

>>> result = re.match("any regular expression", "any string")

Most programs use the compiled form (the first of the above two examples) for
efficiency.

When constructing a regular expression, it is best to construct your pattern
string using Python’s syntax for raw strings by prefacing the string with the -
r' character. This causes the constructed string to treat backslashes as actual
backslash characters, rather than the start of an escape sequence.

For example:

>>> normal = "hello\nworld"
>>> raw = r'"hello\nworld"
>>> print normal

hello

world

>>> print raw
hello\nworld

>>> type(normal), normal
(str, 'hello\nworld')

>>> type(raw), raw

(str, 'hello\\nworld')

27

Note that raw and normal are both python strings; one was just constructed dif-
ferently. Also notice that when we constructed raw, it inserted an extra backslash
before the existing backslash.

We use raw strings because the backslash character is a very important special
character in regular expressions. If we wanted to use backslash characters as part of
a normally-constructed Python string, we would need to either escape every single
backslash by using two backslashes each time, or we could take the much easier
and less confusing route of using Python’s raw strings. To demonstrate this effect,
suppose we wanted to know whether the regular expression "\$3\.00" matched the
string "$3.00". We could get our answer in either of the following ways:

>>> bool(re.match("\\$3\\.00", "$3.00"))
True
>>> bool(re.match(r"\$3\.00", "$3.00"))
True

(You will see why this pattern matches this string soon)

Remember, readability counts.

Literal Characters and Metacharacters

The following characters are used as metacharacters in regular expressions:

o8 x+2{3FL0INIT)

These characters mean special things when used in regular expressions, making the
vast power of regular expressions possible. We will get to using these characters
later. For now, what do we do if want to match these characters literally? We
simply escape these characters using the metacharacter '\':

>>> pattern = re.compile(r"\$2\.95, please")
>>> bool(pattern.match("$2.95, please"))

True

>>> bool(pattern.match("$295, please"))
False

>>> bool(pattern.match("$2.95"))

False

Problem 1. Define the variable pattern_string using literal characters and
escaped metacharacters in such a way that the following python program
prints True:

import re

pattern_string = r"" # Edit this line
pattern = re.compile(pattern_string)
print bool(pattern.match("~{(!%.*_)}&"))

28

Lab 3. Basic Regular Expressions

A little misleadingly, the re.match method isn’t actually checking whether the
given regular expression matches entire strings. Rather, it checks whether the reg-
ular expression matches at the beginning of the string, even if the string continues
on afterward. For example:

>>> pattern = re.compile(r"x")
>>> bool(pattern.match("x"))
True

>>> bool(pattern.match("xabc"))
True

>>> bool (pattern.match("abcx"))
False

You might not expect the pattern 'x' to match the string "xabc", but it does.
This can cause confusion and headache, so we’ll have to be a little more precise
with the help of metacharacters.

The line anchor metacharacters, '~' and '$', are used to match the start and
the end of a line of text, respectively. Let’s see them in action:

>>> pattern = re.compile(r" x$")
>>> bool(pattern.match("x"))
True

>>> bool(pattern.match("xabc"))
False

>>> bool(pattern.match("abcx"))
False

An added benefit of using '~ and '$' is that they allow you to search across mul-
tiple lines. For example, how would we match "worid" in the string "Hello\nWorid"?
Using re.MULTILINE in the re.search function will allow us to match at the beginning
of each new line, instead of just the beginning of the string. Since we have seen
two ways to match strings with regex expressions, the following shows two ways to
implement multiline searching:

>>>bool (re.search(""W","Hello\nWorld"))

False

>>>bool (re.search(""W","Hello\nWorld", re.MULTILINE))
True

>>>patternl = re.compile(""W")

>>>pattern2 = re.compile(""W", re.MULTILINE)
>>>bool (patternl.search("Hello\nWorld"))
False

>>>bool (pattern2.search("Hello\nWorld"))
True

For simplicity, the rest of the lab will focus on single line matching.

Let’s move on to '(', ', and '|'. The '|' character (the “pipe” character,
usually found on the key below the backspace key) matches one of two or more
regular expressions:

>>> pattern2 = re.compile(r" red$| blue$")

>>> pattern3 = re.compile(r" red$| blue$| orange$")

>>> bool(pattern2.match("red")), bool(pattern3.match("red"))
(True, True)

29

>>> bool(pattern2.match("blue")), bool(pattern3.match("blue"))
(True, True)

>>> bool(pattern2.match("orange")), bool(pattern3.match("orange"))
(False, True)

>>> bool(pattern2.match("redblue")), bool(pattern3.match("redblue"))
(False, False)

You can think of '|' as doing an “or” operation. How would we create a regu-
lar expression that matched both "one fish" and "two fish"? Although the regular
expression "one fish|two fish" works, there is a better way, by using both the pipe
character and parentheses:

>>> pattern = re.compile(r"~(onel|two) fish$")
>>> bool(pattern.match("one fish"))

True

>>> bool(pattern.match("two fish"))

True

>>> bool(pattern.match("three fish"))

False

>>> bool(pattern.match("one two fish"))
False

As the above example demonstrates, parentheses are used to group sequences of
characters together and change the order of precedence of the metacharacters, much
like how parentheses work in an arithmetic expression such as 3x(4+5). In regular
expressions, the ' | ' metacharacter has the lowest precedence out of all the metachar-
acters.

Parentheses actually have more uses, which we will learn later. For now, note
that parentheses aren’t matched literally:

>>> bool(re.match(r"r(hi)no(c(e)ro)s", "rhinoceros"))
True

Parentheses help give regular expressions higher precedence. For example, "~one
ltwo fish$" gives precedence to the invisible string concatenation between "two" and
"tish" while "~ (oneltwo) fish$" gives precedence to the '|' metacharacter.

Problem 2. Define the variable pattern_string using the metacharacter ' |-
and parentheses in such a way that the following python program prints True:

import re

pattern_string = r"" # Edit this line

pattern = re.compile(pattern_string)

strings_to_match = ["Book store", "Book supplier", "Mattress store", "<
Mattress supplier", "Grocery store", "Grocery supplier"]

print all(pattern.match(string) for string in strings_to_match)

Your regular expression should not match any other string, including strings
such as "Book store sale".

30 Lab 3. Basic Regular Expressions

Character Classes

The metacharacters '[' and ']1' are used to create character classes. Here they are
in action:

>>> bool(pattern
True
>>> bool(pattern
True
>>> bool(pattern
False
>>> bool(pattern
True

>>> pattern = re.
.match("x"))

compile(r" [xyl")

.match("y"))
.match("z"))

.match("x: Why does this match? Were you paying attention?"))

In essence, a character class will match any one out of several characters.

Inside character classes, there are two additional metacharacters: '-' and '~'.

Although we’ve already seen '~' as a metacharacter, it has a different meaning when
used inside a character class. When '~' appears as the first character in a character
class, the character class matches anything not specified instead. Think of '~' as

performing a set complement operation on the character class. For example:

>>> bool(pattern
True
>>> bool(pattern
True
>>> bool(pattern
False
>>> bool(pattern
False

>>> pattern = re.
.match("x"))

compile(r"~[~abl$")

.match("#"))

.match("a"))

.match("b"))

Note that the two '~' characters mean completely different things; the first
'~ anchors us at the beginning of the line, while the second '~' performs a set

complement operation on the character class "[ab]".

The other character class metacharacter is '-'. This is used to specifiy a range

of values. For example:

>>> pattern
>>> bool(pattern
True

>>> bool(pattern
True

>>> bool(pattern
False

>>> bool(pattern
False

re.
.match("a90"))

compile(r"~ [a-z] [0-9] [0-9]1$")

.match("z73"))

.match("A90"))

.match("zs3"))

Multiple ranges or characters can be included in a single character class; in this

case, the character class will match any character that fits either criterion:

>>> pattern = re
>>> bool(pattern
True

>>> bool(pattern

.compile(r"~ [abcA-C] [0-27-9]$")
.match("b8"))

.match("B2"))

31

True
>>> bool(pattern.match("a9"))
True
>>> bool(pattern.match("a4"))
False
>>> bool(pattern.match("E1"))
False

Notice in the first line that [abca-c] acts like [alblc|(A-C)] and [0-27-9] acts like
[(0-2) | (7-9)].
Finally, there are some built-in shorthands for certain character classes:

e '\da' (think “digit”) matches any digit. It is equivalent to "[0-91".

e '\u' (think “word”) matches any alphanumeric character or underscore. It is
equivalent to "[a-zA-20-9_]".

e "\s' (think “space”) matches any whitespace character. It is equivalent to
"L \t\n\r\f\v]".

The following character classes are the complements of those above:
e '\D' is equivalent to "[~0-9]1" or "["D]"
e '\i' is equivalent to "[~a-zA-z0-9_1" or "["W]"
e '\s' is equivalent to "[~ \t\n\r\f\v]" or "["s]"

These character classes can be used in character classes; for example, "[_A-zZ\s]"
will match an underscore, any capital letter, or any whitespace character.

The '.' metacharacter, equivalent to "[*\n]" on UNIX and "[“\r\n]" on Win-
dows, matches any character except for a line break. For example:

>>> pattern = re.compile(r"~.\d.$")
>>> bool(pattern.match("a0b"))
True

>>> bool(pattern.match("888"))
True

>>> bool(pattern.match("n27"))
True

>>> bool(pattern.match("abc"))
False

>>> bool(pattern.match("m&m"))
False

>>> bool(pattern.match("cat"))
False

Problem 3. Define the variable pattern_string in such a way that the fol-
lowing python program prints True:

import re
pattern_string = r"" # Edit this line
pattern = re.compile(pattern_string)

32 Lab 3. Basic Regular Expressions

strings_to_match = ["a", "b", "c", "x", "y", "z"]

uses_line_anchors = (pattern_string.startswith('~') and pattern_string.<—
endswith('$'))

solution_is_clever = (len(pattern_string) == 8)

matches_list = all(pattern.match(string) for string in strings_to_match)

print uses_line_anchors and solution_is_clever and matches_list

Problem 4. A walid python identifier (aka a valid variable name) is defined
as any string composed of an alphabetic character or underscore followed by
any (possibly empty) sequence of alphanumeric characters and underscores.

Define the variable identifier_pattern_string that defines a regular expres-
sion that matches valid python identifiers that are exactly five characters
long.

To help you test your pattern, the following program should print True.
(This is necessary but not sufficient to show your regular expression is cor-
rect):

import re
identifier_pattern_string = r"" # Edit this line
identifier_pattern = re.compile(identifier_pattern_string)

valid = ["mouse", "HORSE", "_1234", "__x__", "while"]
not_valid = ["3rats", "err*r", "sq(x)", "too_long"]

print all(identifier_pattern.match(string) for string in valid) and not <>
any(identifier_pattern.match(string) for string in not_valid)

Hint: Use the '\w' character class to keep your regular expression rela-
tively short.

NoOTE

As you might have noticed, using this definition, "while" is considered a
valid python identifier, even though it really is a reserved word. In the
following problems, we will make a few other simplifying assumptions
about the python language.

Repetition

Suppose in the last problem we wanted the string to be 20 characters long. You
wouldn’t want to write \w 20 times. In fact, what if you wanted to match at most one
instance of a character or a number with at least three digits? The metacharacters

33

LR |{v7 and

'+ are very useful for repetition.

The '+' metacharacter means “Match zero or more times (as many as possible)”
when it follows another regular expression. For instance:

>>> pattern = re.
>>> bool(pattern.
True

>>> bool(pattern.
True

>>> bool(pattern.
True

>>> bool(pattern
True

>>> bool(pattern
False

>>> bool(pattern.
False

compile(r"~a*b$")
match("b"))

match("ab"))

match("aab"))

.match("aaab"))

.match("abab"))

match("abc"))

The '+' metacharacter means “Match one or more times (as many as possible)”

when it follows another regular expression. As an example:

>>> pattern
>>> bool(pattern.
True

>>> bool(pattern.
True

>>> bool(pattern
True

>>> bool(pattern
False

>>> bool(pattern.
False

re

.compile(zr" ~h[ia]l+$")

match("ha"))

match("hii"))

.match("hiaiaa"))

.match("h"))

match("hah"))

It’s important to understand why "hiaiaa" 4s a match here; matching multiple

times means matching the preceeding expression multiple times, not matching the
results of the preceeding expression multiple times. We haven’t yet learned how to
construct a regular expression with that behavior.

The '7' metacharacter means “Match one time (if possible) or do nothing (i.e.
match zero times)” when it follows another regular expression:

>>> pattern = re.compile(r" abc?$")
>>> bool(pattern.match("abc"))

True

>>> bool(pattern.match("ab"))

True

>>> bool(pattern.match("abd"))
False

>>> bool(pattern.match("ac"))
False

The curly brace metacharacters are used to specify a more precise amount of
repetition:

>>> pattern = re.compile(r"~a{2,4}$")
>>> bool(pattern.match("a"))
False

34

Lab 3. Basic Regular Expressions

>>> bool(pattern
True
>>> bool(pattern
True
>>> bool(pattern
True
>>> bool(pattern
False

.match("aa"))

.match("aaa"))

.match("aaaa"))

.match("aaaaa"))

If two arguments x and y are given to the curly braces (i.e., {x, y}), the preceeding
regular expression must appear between x and y times, inclusive, in order for the
overall expression to match.

-

ACHTUNG!

~

A\

In this last example, line anchors can save us from a lot of confusion. Note
the differences between the following example and the example immediately

above:

>>> pattern = re
>>> bool(pattern
False

True
True
>>> bool(pattern

True

True

>>> bool(pattern.

>>> bool(pattern.

>>> bool(pattern.

.compile(r"a{2,4}")
.match("a"))

match("aa"))

match("aaa"))

.match("aaaa"))

match("aaaaa"))

J

Fo

If only one argument x is given and is followed by a comma, the preceeding
regular expression must match x or more times. If only one argument x is given
without a comma, the preceeding regular expression must match ezractly x times.

r example:

>>> exactly_three =
>>> three_or_more =
>>> def test_both_patterns(string):

re.compile(r"~a{3}$")
re.compile(r"~a{3,}$")

return bool (exactly_three.match(string)), bool(three_or_more.match(string<—

)

>>> test_both_patterns("a"
(False, False)
>>> test_both_patterns("aa"
(False, False)
>>> test_both_patterns("aaa")
(True, True)
>>> test_both_patterns('"aaaa')
(False, True)
>>> test_both_patterns("aaaaa"
(False, True)

You can also test {,x} which will match the preceeding regular expression up to x
times.

35

Problem 5. Modify your definition of identifier_pattern_string from the
previous problem to match valid python identifiers of any length.

Cleaning Dirty Data with Regular Expressions

A common consensus among data scientists is that the majority of your time will
be spent cleaning data. Throughout the remainder of this volume, you will have
multiple opportunities to practice cleaning data.

Often times, cleaning data is as simple as changing the format of your data
or filling missing values. However, with text-based data, additional work is often
necessary. Using regular expressions to clean text-based data is often a good option.

Problem 6. The provided file contacts.txt contains poorly formatted con-
tact data for 5000 (fictitious) individuals. This dataset contains birthdays,
email addresses, and phone numbers for the individuals.

You will notice that much of this data is missing. To make things more
complicated, the format of the data isn’t consistent. For example, some
birthdays are in the format 1/1/99, some in the format 01/01/1999, and some
in the format 1/1/1999. The formatting for phone numbers is not consistent
either. Some phone numbers are of the form (123)456-7890 while others are
of the form 123-456-7890.

Using regular expressions, create a Python dictionary where the key is
the name of the individual and the value is a dictionary of data. For example,
the resulting dictionary should look something like this:

{"John Doe":{"bday":"1/1/1990",
"email":"john_doe90@gmail.com",
"phone":" (123)456-7890"}}

36 Lab 3. Basic Regular Expressions

Additional Material

Regular Expressions in the Unix Shell

As we have seen thusfar, regular expressions are very useful when we want to match
patterns. Regular expressions can be used when matching patterns in the Unix
Shell. Though there are many Unix commands that take advantage of regular
expressions, we will focus on grep and awk.

Regular Expressions and grep

Recall from Lab 1 that grep is used to match patterns in files or output. It turns
out we can use regular expressions to define the pattern we wish to match.

In general, we use the following syntax:

$ grep 'regexp' filename

We can also use regular expressions when piping output to grep.

List details of directories within current directory.
$ 1s -1 | grep "d

Regular Expressions and awk

As in Lab 2, we will be using awk to format output. By incorporating regular
expressions, awk becomes much more robust. Before GUI spreedsheet programs like
Microsoft Excel, awk was commonly used to visualize and query data from a file.

Including if statements inside awk commands gives us the ability to perform
actions on lines that match a given pattern. The following example prints the
filenames of all files that are owned by freddy.

$ 1s -1 | awk ' {if ($3 ~ /freddy/) print $9} '

Because there is a lot going on in this command, we will break it down piece-by-
piece. The output of 1s -1 is getting piped to awk. Then we have an it statement.
The syntax here means if the condition inside the parenthesis holds, print field 9
(the field with the filename). The condition is where we use regular expressions.
The ~ checks to see if the contents of field 3 (the field with the username) matches
the regular expression found inside the forward slashes. To clarify, freddy is the reg-
ular expression in this example and the expression must be surrounded by forward
slashes.

Consider a similar example. In this example, we will list the names of the
directories inside the current directory. (This replicates the behavior of the Unix
command 1s -d */)

$ 1s -1 | awk ' {if ($1 ~ /~d/) print $9} '

Notice in this example, we printed the names of the directories, whereas in one
of the example using grep, we printed all the details of the directories as well.

37

Notice the semicolons delimiting the fields. Also, notice that in <«

between the last and first name, that is a comma, not a semicolon.
<ORDER_ID>; <YEAR><MONTH><DAY>;<LAST>,<FIRST>;<ITEM_ID>

We encourage the interested reader to research more about how regular expres-
sions can be used with sed.

