Lab 7

Pandas |l: Plotting with
Pandas

Lab Objective: Pandas has many built-in plotting methods that wrap around
matplotlib. Since pandas provides tools for organizing and correlating large sets of
data, it 1s important to be able to visualize these relationships. First, we will go
over different types of plots offered by pandas, and then some techniques we can use
to visualize data in useful ways.

Plotting Data Frames

Recall from Lab [g] that in Pandas, a DataFrame is an ordered collection of Series.
A Series is similar to a dictionary, with values assigned to various labels, or indices.
Each Series becomes a column in the data frame, with each row corresponding to
an index. When several Series are combined into a single data frame, it becomes
very easy to compare and visualize data. Each entry has an associated index and
column.

DataFrames have several methods for easy plotting. Most are simple wrappers
around matplotlib commands, but some produce styles of plots that we have not
previously seen. In this lab, we will go over seven different types of plots offered by
pandas.

For these examples, we will use the data found in the file crime_data.txt.

>>> import pandas as pd
>>> crime = pd.read_csv('"crime_data.txt", header=1, index_col=0)

Line Plots

In Lab @ we showed how to plot a Series against its index (the years, in this case)
using matplotlib. With a few extra lines we modify the z-axis label and limits and
create a legend.

>>> from matplotlib import pyplot as plt
>>> plt.plot(crime["Population"], label="Population")
>>> plt.xlabel("Year")

75

76

Lab 7. Pandas Il: Plotting with Pandas

>>> plt.xlim(min(crime.index), max(crime.index))
>>> plt.legend(loc="best")
>>> plt.show()

Equivalently, we can produce the exact same plot with a single line using the
DataFrame method plot (). Specify the y-values as a keyword argument. The z-values
default to the index of the Series. See Figure

>>> crime.plot(y="Population")
>>> plt.show()

le8

— Population

3.2

3.0

2.8

2.6

2.4

2.2

1960 1970 1980 1990 2000 2010
Year

Figure 7.1: Population by Year.

We can also plot two Series against each other (ignoring the index). In mat-
plotlib:

>>> plt.plot(crime["Population"], crime["Burglary"])
>>> plt.show()

With DpataFrame.plot(), specify the z-values as a keyword argument:

>>> crime.plot(x="Population", y="Burglary")
>>> plt.show()

Both procedures produce the same line plot, but the DataFrame method auto-
matically sets the limits and labels of each axis and includes a legend. See Figure
)

7

4000000 4000000

— Burglary

3500000 3500000
3000000 3000000
2500000 2500000
2000000 2000000
1500000 1500000

1000000 1000000

500000 500000,
16 18 2.0 22 24 26 2.8 3.0 32 18 2.0 22 24 26 2.8 3.0

1e8 Population 1e8

Figure 7.2: On the left, the result of p1t.plot(). On the right, the result of DataFrame
.plot ()

Standard matplotlib keyword arguments can be passed in as usual to DataFrame
.plot . This includes the ability to produce subplots quickly, modify the linestyle,
and so on.

>>> crime.plot(subplots=True, layout=(4,3), linewidth=3, style="--", legend=False<—
)
>>> plt.show()

Bar Plots

By default, the DataFrame’s plot () function creates a line plot. We can create other
types of plots easily by specifying the keyword kind. Bar plots are particularly useful
for comparing several categories of data over time, or whenever there is a sense of
progression in the index. Line plots are better suited to show a more continuous
index (such as each year in a century), whereas bar plots are better for a discrete
index (a few distinct years). Consider, for example, three different types of crime
over the last five years. The argument stacked defaults to False (and legend t0 True).
Stacking the bars can help to show the combined totals each year. Both types are
shown below:

Each call to plot() makes a separate figure automatically.

>>> crime.iloc[-5:] [["Aggravated-assault", "Violent", "Burglary"]].plot(kind="bar<—
H)
>>> crime.iloc[-5:] [["Aggravated-assault", "Violent", "Burglary"]].plot(kind="bar<—

, stacked=True, legend=False)
>>> plt.show()

Lab 7. Pandas Il: Plotting with Pandas

2500000 4500000
EEl Aggravated-assault
E Violent

B Burglary 4000000

2000000

3500000

3000000

1500000
2500000

2000000
1000000

1500000

1000000
500000

500000

2008
2009
3 2010
2011
2012
2008
2009
3 2010
2011
2012

<
<

Problem 1. The pydataset moduld?] contains numerous data sets stored as
pandas DataFrames.

from pydataset import data

"data" is a pandas DataFrame with IDs and descriptions.

Call data() to see the entire list.

To load a particular data set, enter its ID as an argument to data().

titanic_data = data("Titanic")

To see the information about a data set, give data() the dataset_id with<—
show_doc=True.

data("Titanic", show_doc=True)

Examine the data sets with the following pydataset IDs:

1. nottem: Average air temperatures at Nottingham Castle in Fahrenheit
for 20 years.

2. vADeaths: Death rates per 1000 in Virginia in 1940.

3. Arbuthnot: Ratios of male to female births in London from 1629-1710.

Use line and bar plots to visualize each of these data sets. Decide which
type of plot is more appropriate for each data set, and which columns to plot
together. Write a short description of each data set based on the docstrings
of the data and your visualizations.

“Run pip install pydataset if needed

79

Histograms

Line and bar plots work well when there is a logical progression in the index, such as
time. However, when frequency of occurence is more important than the location of
the data, histograms and box plots can be more informative. Use plot(kind="hist")
to produce a histogram. Standard histogram options, such as the number of bins,
are also accepted as keyword arguments. The alpha keyword argument makes each
bin slightly transparent.

>>> crime[["Total", "Property"l].plot(kind="hist", alpha=.75)
>>> plt.show()

Alternatively, the bins can be stacked on top of each other by setting the stacked
keyword argument to True. We can also make the histogram horizontal by seting
the keyword orientation to “horizontal”.

>>> crime[["Total", "Property"l]].plot(kind="hist", stacked=True, orientation='"+<-
horizontal")
>>> plt.show()

EEE Total
I Property

Emm Total
I Property

Frequency

15
Frequency

30

Box Plots

Sometimes it is helpful to visualize a distribution of values using the box-and-
whisker plot which displays the median, first and third quartiles, and outliers. Like
the previous examples, select the columns to examine and plot them with plot().
To switch the orientation, use vert=False.

crime[["Robbery", "Aggravated-assault", "Vehicle-Theft"]].plot(kind="box")
plt.show()

80 Lab 7. Pandas Il: Plotting with Pandas

1800000

1600000 -

1400000 -

1200000 -

1000000 -

800000 -

600000 - 1

400000 | El

T
1
1 1
200000 ! !

? .

Robbery Aggravated-assault Vehicle-Theft

T

1

1

1

1

1

1

1

1
—

0

Problem 2. Examine the data sets with the following pydataset IDs:

1. trees: Girth, height and volume for black cherry trees.
2. road: Road accident deaths in the United States.

3. birthdeathrates: Birth and death rates by country.

Use histograms and box plots to visualize each of these data sets. Decide
which type of plot is more appropriate for each data set, and which columns
to plot together. Write a short description of each data set based on the
docstrings of the data and your visualizations.

Scatter Plots

Scatter plots are commonly used in a myriad of areas and have a simple implemen-
tation in pandas. Unlike other plotting commands, scatter needs both an x and a y
column as arguments.

The scatter plot option includes many features which can be used to make
the plots easier to understand. For example, we can change the size of the point
based on another column. Consider the pydataset HairEyeColor, which contains the
hair and eye color of various individuals. A scatter plot of hair color vs eye color
is relatively useless unless we can see the frequencies with which each combination
occurs. Including the keyword argument s allows us to control the size of each point.
This can be set to a fixed value or the value in another column. In the example
below, the size of each point is set to the frequency with which each observation
occurs.

>>> hec = data("HairEyeColor")

81

Hexbins

>>> X = np.unique(hec["Hair"], return_inverse=True)

>>> Y = np.unique(hec["Eye"], return_inverse=True)

>>> hec["Hair"] = X[1]

>>> hec["Eye"] = Y[1]

>>> hec.plot(kind="scatter", x="Hair", y="Eye", s=hec["Freq"]*20)
>>> plt.xticks([0,1,2,3], X[0])

>>> plt.yticks([0,1,2,3], Y[0])

>>> plt.show()

T T . R @

Greenf - ° - - ® - . - - @

Eye

Brown - . - - e E . E . . .
i

i i i
Black Blond Brown Red
Hair

Figure 7.3: Frequency of Hair-Eye Color Combinations

While scatter plots are a great visualization tool, they can be uninformative for
large datasets. It is nearly impossible to tell what is going on in a large scatter plot,
and the visualization is therefore of little value. Hexbin plots solve this problem by
plotting point density in hexagonal bins. With hexbins, the structure of the data
is easy to see despite the noise that is still present. Following is an example using
pydataset’s sat.act plotting the SAT Quantitative score vs ACT score of students

>>> satact = data("sat.act")

>>> satact.plot(kind="scatter", x="ACT", y="SATQ")

>>> satact.plot(kind="Hexbin", x="ACT", y="SATQ", gridsize=20)
>>> plt.show()

Note the scatter plot in Figure [7:4, While we can see the structure of the data,
it is not easy to differentiate the densities of the areas with many data points.
Compare this now to the hexbin plot in the same figure. The two plots are clearly
similar, but with the hexbin plot we have the added dimension of density.

82 Lab 7. Pandas Il: Plotting with Pandas
900 800 32
700 . ‘ | 24
600 . 0 ‘ 20
200 . 0 4
! 0 é lb 15 20 2‘5 3‘0 35 40 200 5 lb 1‘5 20 25 30 3‘5 0
ACT ACT
Figure 7.4: Comparing a scatter plot of SAT and ACT scores with a hexbin plot.
A key factor in creating an informative hexbin is choosing an appropriate gridsize
parameter. This determines how large or small the bins will be. A large gridsize
will give many small bins and a small gridsize gives a few large bins. Figure [7.5
shows the effect of changing the gridsize from 20 to 10.
800 :
' 54
700k i 48
: a2
600
36
%500* R o .] >
‘ : | ; 2
a0l OO .. (0. re. . _ 118
112
300}]
‘ 16
200 i ‘ ‘ i ‘ [
5 10 15 20 25 30 35
ACT
Figure 7.5: Hexbin Plot With Gridsize 10
Lag Plot

We are frequently interested in whether or not data which we have collected is
random. Lag plots are used to investigate the randomness of a dataset. If the data
is in fact random, then the lag plot will exhibit no structure, while nonrandom data
will exhibit some kind of structure. Unfortunately, this does not give us an idea of
what exactly that structure may be, but it is a quick and effective way to investigate
the randomness of a given dataset.

>>> from pandas.tools.plotting import lag_plot
>>> randomdata = pd.Series(np.random.rand(1000))

83

>>> lag_plot(randomdata)
>>> plt.show()

>>> structureddata = pd.Series(np.sin(np.linspace(-10*np.pi, 10*np.pi, num=100)))
>>> lag_plot(structureddata)
>>> plt.show()

0.6

yit+1)
yit+1)
o
>
e
0
0

0.4

0.2

0.0

-0.2 -15
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 12 =15 -1.0 -0.5 0.0 0.5 1.0 15

y(t) y(t)

Figure 7.6: Lag plot of random data (left) compared to a lag plot of a sine wave
(right).

Problem 3. Choose a dataset provided in the pydataset and produce scatter
and hexbin plots demonstrating some characteristic of the data. A list of
datasets in the pydataset module can be produced using the data() command.

For more types of plots available in Pandas and further examples, see http:
//pandas.pydata.org/pandas-docs/stable/visualization.html,

Data Visualization

Visualization is much more than a set of pretty pictures scattered throughout a
paper for the sole purpose of providing contrast to the text. When properly imple-
mented, data visualization is a powerful tool for analysis and communication. When
writing a paper or report, the author must make many decisions about how to use
graphics effectively to convey useful information to the reader. Here we will go over
a simple process for making deliberate, effective, and efficient design decisions.

Catching all of the Details

Consider the plot in Figure What does it depict? We can tell from a simple
glance that it is a scatter plot of positively correlated data of some kind, with temp
—likely temperature—on the x axis and cons on the y axis. However, the picture is
not really communicating anything about the dataset. We have not specified the
units for the = or the y axis, we have no idea what cons is, there is no title, and we
don’t even know where the data came from in the first place.

http://pandas.pydata.org/pandas-docs/stable/visualization.html
http://pandas.pydata.org/pandas-docs/stable/visualization.html

84

Lab 7. Pandas Il: Plotting with Pandas

wns
[=]
S
[=]
T
L]
'

Figure 7.7: Non-specific data.

Labels, Legends, and Titles

In a homework or lab setting, we sometimes (mistakenly) think that it is acceptable
to leave off appropriate labels, legends, titles, and sourcing. In a published report
or presentation, this kind of carelessness is confusing at best and, when the source
is not included, even plagiaristic. Clearly, we need to explain our data in a useful
manner that includes all of the vital information.

Consider again Figure[7.7] This figure comes from the Icecream dataset within
the pydataset package, which we store here in a dataframe and then plot:

>>> icecream = data("Icecream")
>>> icecream.plot(kind="scatter", x="temp", y="cons"

We have at this point reproduced the rather substandard plot in Figure
Using data('Icecrean', show_doc=True) we find the following information:

1. The dataset details ice cream consumption via four-weekly observations from
March 1951 to July 1953 in the United States.

2. coms corresponds to “consumption of ice cream per head” and is measured in
pints.

3. temp corresponds to temperature, degrees Fahrenheit.

4. The listed source is: “Hildreth, C. and J. Lu (1960) _Demand relations with
autocorrelated disturbances_, Technical Bulletin No 2765, Michigan State Uni-
versity.”

We add these important details using the following code. As we have seen
in previous examples, pandas automatically generates legends when appropriate.
However, although pandas also automatically labels the z and y axes, our data
frame column titles may be insufficient. Appropriate titles for the x and y axes
must also list appropriate units. For example, the y axis should specify that the
consumption is in units of pints per head, in place of the ambigious label cons.

85

>>> icecream = data("Icecream")

Set title via the title keyword argument

>>> icecream.plot(kind="scatter", x="temp", y="cons", title="Ice Cream <
Consumption in the U.S., 1951-1953",)

Override pandas automatic labelling using xlabel and ylabel

>>> plt.xlabel("Temp (Farenheit)")

>>> plt.ylabel("Consumption per head (pints)")

>>> plt.show()

Unfortunately, there is no explicit function call that allows us to add our source
information. To arbitrarily add the necessary text to the figure, we may use either
plt.annotate OI plt.text.

>>> plt.text(20, .1, "Source: Hildreth, C. and J. Lu (1960) _Demand relations <>
with autocorrelated disturbances_\nTechnical Bulletin No 2765, Michigan <
State University.", fontsize=7)

Both of these methods are imperfect, however, and can normally be just as easily
replaced by a caption attached to the figure in your presentation or document
setting. We again reiterate how important it is that you source any data you use.
Failing to do so is plagiarism.

Finally, we have a clear and demonstrative graphic in Figure

060 Ice Cream Consumption in the U.S., 1951-1953

055 | .]
0ok]
nas .]
D40 | . . . |

0350 L. :]

0.30 b L

Consumption per head (pints)

025 * . . 1

020 I I | I I
20 30 40 50 &0 70 80

TEmp (Farenheit)

Figure 7.8: Source: Hildreth, C. and J. Lu (1960) _Demand relations with autocor-
related disturbances_, Technical Bulletin No 2765, Michigan State University.

Problem 4. Return to the plots you generated in problem (datasets notten
, VADeaths, and Arbuthnot). Reproduce and modify these plots to include:

e A clear title, with relevant information for the period or region the
data was collected in.

86

Lab 7. Pandas Il: Plotting with Pandas

e Axes that specify units.
e A legend (for comparison data).

e The source. You may include the source information in your plot or
print it after the plot at your discretion.

Note that in this problem, as well as for plots in subsequent labs, points will
be taken off if any of these items are partially or fully missing from your
graphs.

Choosing the Right Plot

Now that we know how to add the appropriate details for remaining plots, we return
to the fundamental question of data visualization: Which plot should you use for
your data? In previous sections, we have already discussed the various strengths
and weaknesses of available pandas plotting techniques. At this point, we know
how to visualize data using line graphs, bar charts, histograms, box plots, scatter
plots, hexbins, and lag plots.

However, perfectly plot-ready data sets—organized by a simple continuum or a
convenient discrete set—are few and far between. In the real world, it is rare to find
data that is perfectly ready to become a meaningful visual, even if it is already a
DataFrame. As such, deciding how to organize and group your data is one of the most
important parts of “choosing the right plot”.

In Lab [§] we will go over how to group data in meaningful ways. You should
then be better able to choose the right type of plot for your data.

