
Lab 8

Pandas III: Grouping and
Presenting Data

Lab Objective: Learn about Pivot tables, groupby, etc.

Introduction

Pandas originated as a wrapper for numpy that was developed for purposes of data
analysis. Data seldom comes in a format that is perfectly ready to use. We always
need to be able to interpret what our data is telling us. Some data may be of little
or no use, while other aspects of our data may be vital. Pivoting is an extremely
useful way to sort through data and be able to present results clearly and compactly.
Two central ways to accomplish this are by using groupby and by using Pivot Tables.

Groupby

In Lab 7 we introduced pydatasets, and mentioned how, in their raw format, plotting
would be nonsensical. Many datasets are simply composed of tables of individuals
(represented as rows), with a list of classifiers associated with each one (columns).

For example, consider the msleep dataset. In order to view the columns present
in this dataset, we make use of the function head(). This will show us the first five
rows, and all of the columns.

>>> import pandas as pd

>>> from pydataset import data

>>> msleep = data("msleep")

>>> msleep.head()

name genus vore order conservation

1 Cheetah Acinonyx carni Carnivora lc

2 Owl monkey Aotus omni Primates NaN

3 Mountain beaver Aplodontia herbi Rodentia nt

4 Greater short-tailed shrew Blarina omni Soricomorpha lc

5 Cow Bos herbi Artiodactyla domesticated

sleep_total sleep_rem sleep_cycle awake brainwt bodywt

1 12.1 NaN NaN 11.9 NaN 50.000

2 17.0 1.8 NaN 7.0 0.01550 0.480
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3 14.4 2.4 NaN 9.6 NaN 1.350

4 14.9 2.3 0.133333 9.1 0.00029 0.019

5 4.0 0.7 0.666667 20.0 0.42300 600.000

Each row consists of a single type of mammal and its corresponding identifiers,
including genus and order, as well as sleep measurements such as total amount of
sleep (in hours) and REM sleep, in hours. When we try to plot this data using
plt.plot, the individual data points do not demonstrate overall trends.

>>> msleep.plot(y="sleep_total", title="Mammalian Sleep Data", legend=False)

>>> plt.xlabel("Animal Index")

>>> plt.ylabel("Sleep in Hours")

>>> plt.show()

The above code results in Figure 8.1.

Figure 8.1: Source: Proceedings of the National Academy of Sciences, 104 (3):1051-
1056, 2007. Updates from V. M. Savage and G. B. West, with additional variables
supplemented by Wikipedia.

This set of connected data points is not particularly revealing, as it plots the first
numerical column, sleep_total, as a function of the animal index, which is seemingly
random.

The DataFrame contains information that will help us to make better sense of this
data. Using groupby(), we can select the parts we want. As the name implies, groupby
() takes a DataFrame and creates di↵erent groupings. For this dataset, let’s consider
the sleep di↵erences between herbivores, omnivores, insectivores, and carnivores.
To do so, we simply call the groupby method on the vore column to obtain a groupby

object organized by diet classification.

>>> vore = msleep.groupby("vore")

You can also group the data by multiple columns, for example, both the vore and
order classifications. To group and view this data, simply use:
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>>> vorder = msleep.groupby(["vore", "order"])

# View groups within vorder

>>> vorder.describe()

This listing is much too long to view here, but you should be able to see that it
first sorts all rows into the appropriate vore category, and then into the appropriate
order category. It gives the count of rows in each section, along with the mean,
standard deviation, and other potentially useful statistics.

Pandas groupby objects are not lists of new DataFrames associated with groupings.
They are better thought of as a dictionary or generator-like object which can be
used to produce the necessary groups. However, the get_group() method will do
this, as follows:

# Get carnivore group

>>> Carni = vore.get_group("carni")

# Get herbivore group

>>> Herbi = vore.get_group("herbi")

The groupby object includes many useful methods that can help us make vi-
sual comparisons between groups. The mean() method, for example, returns a new
DataFrame consisting of the mean values attached to each group. Using this method
on our vore object returns a nicely organized DataFrame of the average sleep data for
each mammalian diet pattern. We can similarly create a DataFrame of the standard
deviations for each group.

At this point, we have a nicely organized dataset that can easily be turned into
a bar chart. Here, we use the DataFrame.loc method to access three specific columns
in the bar chart (sleep_total, sleep_rem, and sleep_cycle).

>>> means = vore.mean()

>>> errors = vore.std()

>>> means.loc[:,["sleep_total", "sleep_rem", "sleep_cycle"]].plot(kind="bar",  -
yerr=errors, title="Mean Mammallian Sleep Data")

>>> plt.xlabel("Mammal diet classification (vore)")

>>> plt.ylabel("Hours")

>>> plt.show()
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Figure 8.2: Source: Proceedings of the National Academy of Sciences, 104 (3):1051-
1056, 2007. Updates from V. M. Savage and G. B. West, with additional variables
supplemented by Wikipedia.

Problem 1. Examine the diamonds dataset found in the pydataset module.
This dataset contains the identifiers and attributes of 53,940 individual round
cut diamonds. Using the groupby method, create a visual highlighting and
comparing di↵erent aspects of the data. This can be in the form of a single
plot or comparative subplots. Use the plotting techniques from Lab 7.

Print a paragraph explaining what type of graph you used, why, and
what we learn about the dataset from your plot. Don’t forget to include
titles, clear labels, and sourcing.

The following is an example of comparative subplots, which may not be
used for your plot.

Figure 8.3: Source: Adopted from R Documentation

The following is an appropriate (if lengthy) description of our plots:

The above plots were created using groupby on the diamond colors and
then using a hexbin comparing carats to price for the highest and lowest
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quality diamonds, respectively. This hexbin is particularly revealing for each
set of thousands of diamonds because it meaningfully displays concentration
of datapoints. Matplotlib’s new viridis colorplot, with a dark background,
reveals bins that would have been invisible with a white background. By
comparing these plots, we note that the greatest number of J quality di-
amonds in the dataset are about 1.25 carats and $4000 dollars in price,
whereas the highest concentration of D quality diamonds are smaller and
therefore cheaper. We may attribute this to D quality diamonds being rarer,
but the colorbar on the side reveals that D diamond numbers are, in fact,
far higher than those of the J color. Instead it is simply more likely that D
quality diamonds of larger sizes are rarer than those of smaller sizes. Both
hexbins reveal a linearity between diamond weight and diamond price, with
D diamonds showing more variability and J diamonds displaying a strict
linearity.

Groupby is a very useful method to order data. However, it is not the perfect tool
for every situation. As we saw when sorting data by multiple columns, we can end
up with a useful grouping, but too much information to display. If we want to see
information in table format, we can make use Pivot Tables.

Pivot Tables

With a given pandas DataFrame, we can visualize data easily with the method pivot_table

(). The Titanic dataset (titanic.csv) is especially apt for this. It includes many
columns, but we will use only Survived, Pclass, Sex, Age, Fare, and Embarked here. You
will need to load in this dataset for upcoming problems, using principles taught in
Lab 6. Note that many of the ages are missing values. For our purposes, simply
fill these missing values with the average age. Then drop any rows that are missing
data. Once we have a usable dataset, we can make Pivot Tables to view trends in
the data.

>>> titanic.pivot_table('Survived', index='Sex', columns='Pclass')
Pclass 1 2 3

Sex

female 0.962406 0.893204 0.473684

male 0.350993 0.145570 0.169540

This simple command makes a table with rows Sex and columns Pclass, and
averages the result of the column Survived, thereby giving the percentage of survivors
in each grouping. Note that this is similar to groupby: it sorts all entries into
their gender and class, and the “function” it performs is getting the percentage of
survivors.

This is interesting, and we can clearly see how much more likely females were
to survive than males. But how does age factor into survival rates? Were male
children really that likely to die as compared to females in general?

We can investigate these results by multi-indexing. We can pivot based on more
than just two variables, by adding in another index. Note that in the original



92 Lab 8. Pandas III: Grouping and Presenting Data

dataset, the column Age has a floating point value for the age of each passenger. If
we were to just add ‘age’ as an argument for index, then the table would create a
new row for each age present. This wouldn’t be a very useful or simple table to
visualize, so we desire to partition the ages into 3 categories. We use the function
cut() to do this.

>>> # Partition each of the passengers into 3 categories based on their age

>>> age = pd.cut(titanic['Age'], [0,12,18,80])

Now with this other partition of the column age, we can add this dimension to
our pivot table, passing it along with Sex in a list to the parameter index.

>>> # Add a third dimension, age, to our pivot table

>>> titanic.pivot_table('Survived', index =['Sex', age], columns='Pclass')
Pclass 1 2 3

Sex Age

female (0, 12] 0.000000 1.000000 0.466667

(12, 18] 1.000000 0.875000 0.607143

(18, 80] 0.966667 0.878049 0.436170

male (0, 12] 1.000000 1.000000 0.342857

(12, 18] 0.500000 0.000000 0.081081

(18, 80] 0.328671 0.087591 0.159420

What do we notice? First of all, male children (ages 0 to 12) in the 1st and 2nd
class were very likely to survive, whereas those in 3rd class were much less likely
to. However, look at the female children in first class. It says that zero percent
survived. This might seem a little odd, but if we looked at our data set again to see
how many passengers fell into this category of female, 1st class, and age 0 to 12, we
would find only one passenger. Therefore, the statistic that 0% of female children
in first class lived is misleading. We can see the number of people in each category
by simply specifying the parameter aggfunc=‘count’.

>>> titanic.pivot_table('Survived', index=['Sex',age], columns='Pclass', aggfunc= -
'count')

Pclass 1 2 3

Sex Age

female (0, 12] 1 13 30

(12, 18] 12 8 28

(18, 80] 120 82 94

male (0, 12] 4 11 35

(12, 18] 4 10 37

(18, 80] 143 137 276

The parameter aggfunc defaults to ‘mean’, which is why we have seen the mean
survival rate for each of the di↵erent categories. By specifying aggfunc to be ‘count’,
we get how many passengers of each category are present in the table. In this case,
specifying the value is ‘survived’ is redundant. We get the same table if we put in
Fare in place of Survived.

This table brings up another point about partitioning datasets. This Titanic
dataset includes data for only about 1000 passengers. This is not that large of a
sample size, relatively speaking, and significant sample sizes aren’t guaranteed for
each possible partitioning of the the data columns. It is a good practice to ask
questions about the numbers you see in pivot tables before making any conclusions.
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Now, for fun, let’s add a fourth dimension to our table–the cost of the passenger’s
ticket. Let’s add this dimension to our columns of the pivot table. We now use the
function qcut() to partition the fare column’s data into two di↵erent categories.

>>> # Partition fare column into 2 categories based on the values present in fare -
column

>>> fare = pd.qcut(titanic['fare'], 2)

>>> # Add the fare as a dimension of columns

>>> titanic.pivot_table('Survived', index=['Sex',age], columns=[fare, 'Pclass'])
Fare [0, 15.75] (15.75, 512.329]

Pclass 1 2 3 1 2 3

Sex Age

female (0, 12] NaN 1.000000 0.600000 0.000000 1.000000 0.400000

(12, 18] NaN 0.750000 0.666667 1.000000 1.000000 0.250000

(18, 80] NaN 0.875000 0.434783 0.966667 0.880000 0.440000

male (0, 12] NaN 1.000000 0.636364 1.000000 1.000000 0.208333

(12, 18] NaN 0.000000 0.115385 0.500000 0.000000 0.000000

(18, 80] 0.2 0.113636 0.153846 0.333333 0.040816 0.206897

We now see something else about our dataset–we get NaNs in some entries.
The dataset has some invalid entries or incomplete data for the column fare. Let’s
investigate further.

By inspecting our dataset, we can see that there might not be any people in the
categories given in the pivot table. We can fill in the NaN values in the pivot table
with the argument fill_value. We show this below.

>>> # Specify fill_value = 0.0

>>> titanic.pivot_table('survived', index=['sex',age], columns=[fare, 'class'],  -
fill_value=0.0)

Fare [0, 15.75] (15.75, 512.329]

Pclass 1 2 3 1 2 3

Sex Age

female (0, 12] 0.0 1.000000 0.600000 0.000000 1.000000 0.400000

(12, 18] 0.0 0.750000 0.666667 1.000000 1.000000 0.250000

(18, 80] 0.0 0.875000 0.434783 0.966667 0.880000 0.440000

male (0, 12] 0.0 1.000000 0.636364 1.000000 1.000000 0.208333

(12, 18] 0.0 0.000000 0.115385 0.500000 0.000000 0.000000

(18, 80] 0.2 0.113636 0.153846 0.333333 0.040816 0.206897

It should be noted though that with datasets where NaN’s occur frequently,
some preprocessing needs to be done so as to get the most accurate statistics and
insights about your dataset. You should’ve worked on cleaning datasets in previous
lab, so we don’t go further into detail about the topic here.

Problem 2. Suppose that someone claims that the city from which a pas-
senger embarked had a strong influence on the passenger’s survival rate.
Investigate this claim.

1. Using a groupby() call, see what the survival rates of the passengers
were based on where they embarked from (embark_town).

2. Next, create a pivot table to further look at survival rates based on
both place of embarkment and gender.
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3. What do these tables suggest to you about the significance of where
people embarked in influencing their survival rate? Examine the con-
text of the problem, and explain what you think this really means.
Find 2 more pivot tables that investigate the claim further, looking at
other criterion (e.g., class, age, etc.). Include explanations.

As you have learned in the pandas labs, pandas is a powerful tool for data pro-
cessing, and has a plethora of built-in functions that greatly simplify data analysis.
Ler’s now put the skills you have acquired to practical use.

Problem 3. Search through the pydatasets and find one which you would
like to present. Make sure there is enough data to produce a proper presen-
tation. Process the data appropriately, and create your own presentation,
as though you were presenting to a superior in the appropriate line of work.
Your presentation can be in any format you like, but as a bare minimum, it
must include the following:

• An appropriate title.

• 3 charts or visuals with captions.

• 3 tables with captions.

• 2 paragraps of textual explanations.

• Appropriate data sourcing.


